cecma

N0UalG ECMA-262
; - - 5.1 Edition/ June 2011

ECMAScript Langu age
Specification

=

Rue du Rhone 114 CH-1204 Geneva T. +41 22 849 6000 F: +41 22 849 6001

A_ COPYRIGHT PROTECTED DOCUMENT

© Ecma International 2011

Copyright notice
Copyright © 2011 Ecma International

Ecma International

Rue du Rhone 114

CH-1204 Geneva

Tel: +41 22 849 6000

Fax: +41 22 849 6001

Web: http://www.ecma-international.org

This document and possible translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this
section are included on all such copies and derivative works. However, this document itself may not be
modified in any way, including by removing the copyright notice or references to Ecma International, except as
needed for the purpose of developing any document or deliverable produced by Ecma International (in which
case the rules applied to copyrights must be followed) or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be revoked by Ecma International or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE."

Software License

All Software contained in this document ("Software)" is protected by copyright and is being made available
under the "BSD License", included below. This Software may be subject to third party rights (rights from
parties other than Ecma International), including patent rights, and no licenses under such third party rights
are granted under this license even if the third party concerned is a member of Ecma International. SEE THE
ECMA CODE OF CONDUCT IN PATENT MATTERS AVAILABLE AT http://www.ecma-
international.org/memento/codeofconduct.htm FOR INFORMATION REGARDING THE LICENSING OF
PATENT CLAIMS THAT ARE REQUIRED TO IMPLEMENT ECMA INTERNATIONAL STANDARDS*.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the authors nor Ecma International may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE ECMA INTERNATIONAL "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL ECMA INTERNATIONAL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

http://www.ecma-international.org/

A_ COPYRIGHT PROTECTED DOCUMENT

© Ecma International 2011

secmd

Contents Page
1] 4 o To [UYox 110] o HA PSR SR vii
S T o] 0] o 1 = PP PUPPPPPPPPRINN 1
A ©70] o) (o] 4 1 F=T o ot =IO PP PO PPPPPPRTPPPPP 1
3 NOrMaAtiVe ref@rENCES ..o 1
. OVEBIVIEW .oetieerireeereeeeereeeseeesesessasssssssssssssssasssssssssssssssssssssssesssssssssssnsnssnnnes 1
o V= o IS Tod] o)] oo PSP PP PP OPPPPPROPPP 2
4.2 LANQUAGE OVEIVIEW ...eiiiiiiiiiieitieie ettt e sttt e e sate et e e s be et e e aabt et e e 4k e e et a4k b et e e ek b et e e s bbbt e e e ambe et e e aabbe e e s anbbeeesannneee s 2
N R ©] 1= To] £ PSP PP OPTPPPOPPP 3
4.2.2 The Strict Variant 0f ECMASCIIPT ...ooiiiiiiiiiiiie ittt sttt e et e e saneeee s 4
4.3 Terms and efiNITIONS ...ttt e e e e e e sttt e e e e s s e kb be e et e e e e e e e e anbbereeeeeeeaanne 4
5 NOTAtioNaAl CONVENTIONS ...ttt e ettt e e e e e e s s bbb e e et e e e e e s abbbe et e e e e e e s anbbbbeeeeeeseaannnrnnees 7
5.1 Syntactic and Lexical GrammarS.........ccooviiiiiiiiii e, 7
0 I R o | g (=) B e f =T] =10 1 = TP 7
5.1.2 The Lexical and REGEXP GramMmMarS......ccccccciiiiiiiii et 8
5.1.3 The NUMEriC StriNg GramMIMarccociiiiiii e 8
5.1 4 The SYNTACTIC GIaMIMATiueiiiiiiiiee it e ettt e ettt e ettt et e e e st et e e e sabb e e e e sttt e e e aabbeeeeanbbeeeesbbeeeesnbbeeeeane 8
5.1.5 The JSON GramMMarcoooiiiiiiiieeeeeeeeeee e 9
5.1.6 Grammar NOTAtiONoooiiiiii 9
5.2 AIGOTIithm CONVENTIONS ...oiiiiiiiiiii ittt b bt e e s bbbt e s bbbt e e s anbe e e e e anbbeeesannneee s 11
(SIS Yo 1 U T o = I =g (PN 13
7 LeXical CONVENLIONS ..o 13
7.1 Unicode FOrmat-Control ChAraCIEIScooi ittt e et e e e e e enbaae e 14
7.2 WHhIte SPACE .o 14
RS I I 1 (o =T 0 YT P o TP PPPPPT PP 15
T4 COMIMENES . 16
S T e] =T o ST PPPPPT PP 17
7.6 Identifier Names and Identifiers...... ... 17
7.6.1 RESErved WOIAS ...coooiiiiiii 18
8 A ¥ 1 1o A1 =L o) =N 19
T8 LITEIaAlS oo 19
T.8.1 NUILILEIAIS oo 19
7.8.2 B00IEaAN LITEIAlS .coooeieiieee 20
7.8.3 NUMEKIC LItEralS c.cooooiiiii 20
T.8.4 SEING LITEIAIS ..eeeeiiiiiii ittt e oottt e et e e o4 oo ha b ettt e e e e e e e ababe et e e e e e e s annbbbeeeeaeeeeannbbnneeas 22
7.8.5 Regular EXPresSion LITEIalS. ... i ittt e e e e e e e e e e e e e e e anbneneeas 24
7.9 Automatic SEMICOION INSEItION ..occiiiiiiii 26
7.9.1 Rules of Automatic SEmIcolon INSErtioN ... 26
7.9.2 Examples of Automatic SEmMICcoloN INSErtiONcooiiiiiiiiii e 27
8 T PO 28
S I o L= U Yo [T g T=To B I o L= PP UPUPRP 28
S 2 I 4 T= T N LU R IV o PSPPI 28
S B I g = = Yo o[- o T Y/ o 1= PP UUUPRRP 28
S I A T= S (] oo B 1Y/ o 1= PSP OUU PR 28
S I A= N[0T o] o T=T i Y/ o 1= PP 29
ST I =T @ oY= Tox A 157/ o 1= R 30
8.6.1 Property ALIFIDULES ...ttt e e e e e et e e e e e e e e s s bbb b e ee e e e e e e annaaeneeas 30
8.6.2 Object Internal Properties and MethodsSooiii i 31
8.7 The Reference SPeCifiCAtiON TYP@ ... it e e e e e e st e e e e e e e e snnnaeeeeas 35

© Ecma International 2011 i

secmd

A R 1= Y =1L U = (Y PSRRI 35
8.7.2 PULVAIUE (W, W) ittt ekttt e skttt e ekt e sk bt e e s bbbt e e sk bb et e s bbb e e e s anbee e e s annreeas 36
8.8 The LiSt SPECITICAION TY P ...ttt et e bbb e e s bbb e e s bb e e e s anbre e e e annreeas 36
8.9 The Completion SPeCifiCAtION TYPE ..ooiieiiiiiiiiii ittt e e s s e e s ennneeas 36
8.10 The Property Descriptor and Property Identifier Specification TYpes.......cccoocviiiiiieiniiee e, 37
8.10.1 ISACCESSOIDESCIIPLON ([DESC).uueiiiiiiiiiiie ittt ettt ettt e bbb e s bbe e e s bt e e e e s anb e e e e s annneeas 37
8.10.2 ISDAtADESCIIPTON (DESC) cuvieeieiiiiiee ittt ettt ettt ettt e bttt e skttt e e s bbb e e e s bbb et e s bt ne e e s anbneeesannreeas 37
8.10.3 ISGENEIICDESCIIPION (DESC) 1iiiiiiiiiiiiiei e e e e e ettt e e e e e e e e e e st e e e e e e s e s s e aereeeeessaanteereaeeeesaasnrenes 37
8.10.4 FromPropertyDeSCIPIOr (DESC) uuuuuiiiiiei ittt e e ettt e e e e s s e e e e s e s e e e e e e s s annbr e e e e aeeesannnnrnees 38
8.10.5 TOPropertyDeSCIPLOr (OD]) .o e e e e s e s e e e e e s s a b r e e e e e e e e e annraees 38
8.11 The Lexical Environment and Environment Record Specification TYPeS ...cccccceevvvvvivieireeeeevecennnn, 39
8.12 Algorithms for Object Internal MethodS..........uuiiiiiiii i 39
8.12.1 [[GELOWNPIOPEITY]] (P).uetttteieieeiiiiiiiieiee e e e s i e sttt e e e e e e s et e e e e e e e s st taeeeaeesassstaeeeeeaeesaanssreneeeeaeesannnnenes 39
o A | [C1= 4 o (o] o 1= 4 4 VA | [I ST U PP UPPPRUTPN 39
LS 2 I 1 LT) (0 T ST RROPRRTIN 39
8.12.4 [[CANPUL]] (P) -eeeetiutteteeittite ettt ettt ettt sttt e sttt e e e bbbt e e s bbbt e e e bbb et e e s be et e e bbb e e e e nbn e e e nannreeas 39
8.12.5 [[PUL]] (P, V, TRIOW) oeeeiiiiiiiieei ittt ettt e s bbbt e e s bttt e s bt a e e e s bbn e e e s nnnneeas 40
8.12.6 [[HASPIOPEITY]] (P) ceeeiiiiiiiiiiiiie ittt ettt ettt e e st e e s bbbt e e s bbb e e e s nbe e e e s annreeas 40
8.12.7 [[Delet]] (P, TRFIOW) . iteiieiitiiee ettt e bttt sttt e s bb et e e s ebe e e e s bbb e e e s bbn e e e s nnneeas 40
8.12.8 [[DefaultValue]] (NINT) ..ottt 41
8.12.9 [[DefineOwnProperty]] (P, DESC, TRIOW) ..ccciiiiiiiiiiiiieeeee ettt 41
9 Type ConVersion @nd TESTINGuuiiiriiiiiiiieii ettt e e e s s e e e s s n e e e s annre e e s nnnrees 42
LS A oY 1 1 VL0 Y= PP PTPRPP 43
LS 0 = Yo T o] 1= o PSSO PTPR TP 43
LS R B o1\ U] 4 o1 =] PSP PRR P TPUPR TP 43
9.3.1 ToNumber Applied t0 the StrHNG TYP .. it eaneees 44
LS I o][=T 1= PO TP RTPPR PPN 46
9.5 ToINt32: (SIGNEA 32 Bit INTEIET) .ueiiiieiiiiei ettt e bbb e e et b e e s nbbe e e e s nnnreeas a7
9.6 ToUint32: (UNSIgNed 32 Bil INTEGET) .ooiiuiiiiiitiiiie ittt ettt e et e e nb e e e s nnaneeas a7
9.7 ToUintl6: (UNSIigNed 16 Bil INTEGET) .ooiiuiiiiiiiiiii ittt et e e b e e e s nnaeeeas a7
LSS B 0 1514 11 o RS PSR UUUPRTT 48
9.8.1 ToString Applied to the NUMbBer TYPe. ... 48
0.9 TOODJECT i 49
9.10 CheckODbjJeCtCOEICIDIE ...ciiiiiiieeeeeeee e 49
.11 ISCAIADIE ..t e s 49
9.12 The SameValue AlGOrithm ... 50
10 Executable Code and EXECULION CONTEXEScoiiiiiiiiiiieeiiriie ettt 50
10.1 Types Of EXECULANIE COU ... et 50
0B O S o 1, o Yo L= @ Yo =SSP 51
O B2 I g o= L =t A VAT oY =T o S 51
O B2 R Y o AV AT Y oY 4 =T o 0= oo o £ S 51
10.2.2 Lexical ENVIroNmMENnt OPEIatiONSciiiiiiiieiiiiie ettt ettt e et e e e e snbe e e e s anbe e e e e anbe e e e e snbeeeeenneee 56
10.2.3 The Global ENVIFONMENT ...ttt e e e s e s e e e e e e s e et e e e e e e e s asntanereeeeesssnnnsannnenees 56
10.3 EXECULION COMEEXES ..utttiiiiaiiiiiitiiiee e e e ettt et e e e e ettt et e e e e e s s et bttt e e e e e s e e anbeeeeeeaeeaeannbbaeeeeeeeseannbneeeaaaeas 56
10.3.1 1dentifier RESOIULION ...eeiiiiiiee ittt e e e e s ettt e e e e e e e e s aab b e e e e e e e e s e annbneeeaaaeas 57
10.4 Establishing an EXeCULION CONTEXT ..ot e et e e e e e s e eeeeae s 57
10.4.1 ENtering GlODAl COTE ..ottt e e ettt e e e e e e e et a e e e e e e e e e anbaeeeeae s 58
10.4.2 ENLEIING EVAI COO@ ...uiiiiiiiiiiiiiiiiiie ettt ettt et e e e e e s ettt e e e e e e e s nnbb e e e e e e e e e e annbaeeeaaaeas 58
10.4.3 ENtering FUNCLION COO@ ...ttt e e e e ettt e e e e e e e st b e e e e e e e e e e e annbraneaaaeas 58
10.5 Declaration Binding INSLANTIALIONoiiiiiiiiiiiee et 59
10.6 AFQUMENTS ODJECT ..ttt e bt e e e st e e e s a bt e e e e abe e e e e anbe e e e s anbe e e e e snbeeeeeanbeeeeenees 60
5 R b o =T o 10 = S 63
5 O R = 1 0 P TV b eq o] ==Y Lo S 63
11.1.1 THE RIS KEYWOIT .eeeiiiiiiiii ettt ettt e e e ettt e e e s ab et e e e aa b et e e e anbe e e e e anbe e e e e snbeeeeenees 63
11.2.2 1dentifier REFEIENCE ..ottt e e e ettt e e e e e e e e st b e e e e e e e e e e annbneeeaaaeas 63
11.0.3 LIteral REFBIBINMCE ... ettt e e e e e e s b et e e e e e e e s s aab b e e e e e e e e e e annbaaeeaaaeas 63
O R S AN =V [T = L= SO TSP EUP TR 63
5 00 T @ o] 1= L = = P 65

ii © Ecma International 2011

secmd

5 Y ST I o T T o 10T o1 Yo @ 1T = Lo 1 RS 67
11.2 Left-Hand-Side EXPrESSIONS ..ooiuiiiii ittt ettt ettt et e e st e e e st e e e e e st b e e e e sabe e e e e sabneeeesbrneeeane 67
L11.2.1 PrOPEITY ACCESSOIS .uuuitiiiiiieeiiiittre et e e ettt ettt e e e s e s ettt e e et e s e E e ettt e e e s e s s b e ae e et e e e s e s e s rn e e e e eee e e e annernnneees 67
11.2.2 THE NEW OPBIALOT .. itteie ettt ettt ettt ettt ettt e e b et e e e sa b e e e e e sabe e e e e aab bt e e e aabe e e e e aabbe e e e sabbeeeesbbeeeesbrneeeane 68
121.2.3 FUNCHION CAlIS oeiiiiiiiiiieiee ittt ettt et s et s e e et e et e e e s re e e smn e e anr e e e nne e e snreeennneenn 68
2 A N o LU 4 Y=o A I = SRR 69
11.2.5 FUNCHON EXPIrESSIONS .uutiiiiiiiiiiiiitiieieee e e ettt et e e e s s sttt e e e e e e s s st e e e eeeaessaaastaseeeeeeeaesanntaseeeeeeeseaansnnnnnees 69
G T oo 1 1 D T o T =11 [0 SRR 69
11.3.1 POStfiX INCrEMENT OPEIALONeiiiieeieee ettt e r e e e e e s s e e e e e s s s st e e e e e e s s sssntareeeeaeeeeaannnenneees 70
11.3.2 POStfiX DECIEMENT OPEIALOTeeiieiiitiiee ittt sttt e et e e e st e e e st b e e e e aabe e e e e sabe e e e e snbnreeeabreeeeane 70
114 UNGIY OPEIALOIS cooeiiiiiiiiiitii e et ettt e e ettt e e e s e sttt e e e e e s ettt e e e s e e b e ettt e e e e e e asrne e e et e e e s e annnrnnnee s 70
R I g L= [[(I @ o 1= = (o] SO PO TP PP PP OPPPPTPPPPPN 70
3 S I o= o (o B @ oY= = (o) RS 71
e B I L= Y o 1Yo @ o 1= =1 (o] SO PO PPPOPPPPOPPPPN 71
11.4.4 PrefiX INCremMeENnt OPEIALON ...coi ittt ettt ettt ettt e e st e e e st b e e e e sabe e e e e aabb e e e e sabbeeeeaabbeeeesnbreeeeane 71
11.4.5 Prefix Decrement OPeratOr. ... 72
R I O L =T YA @ 1= =1 {0] TP PTRTRSSPPPIN 72
L1147 UNGBIY = OPEIALOL .ciiiiitieiiiee e ettt e e et e e e s e s e et e e e e e sttt e e e s e e e s e ettt e e e s e s n s rnes e et e e e e e annnrnrnees 72
11.4.8 BitWiSE NOT OPEIALOT (=)ereteeitreeeeitrieeeitteeeeatteeeeatteeeeabseeesabeeeeesbbeeeeabseeeeabbeeeesbeeeeesbbeeeesnbreeeeanes 72
11.4.9 Logical NOT Operator (I), 73
115 MUILIPHCALIVE OPEIALOTS ...iuteeiiiiiiiie ettt ettt e e st e e e st b e e e e sabb e e e e aabb e e e e anbbeeeesbbeeeeabreeeeanes 73
11.5.1 APPIYING the * OPEIALOT ...eeiiiiiiiiie ettt e et e e e st bt e e e sbb e e e e sabb e e e e sbbeeeesnbreeeeanes 73
11.5.2 AppPIYIiNg the] OPErator ..o, 74
11.5.3 APPIYING the Q0OPEIALOT . ..eeiiiiiiiiei ittt et e et e e e st b e e e e sabb e e e e sabb e e e e abbeeeesbreeeeanes 74
0 I AN o L AV O o 1= = (o] = RSP SRRR 75
11.6.1 The Addition OPErator (4) oo, 75
11.6.2 The SUDLraction OPEIALOT (=) .eeeeeiiiiieeiiiiiee ittt et e et bt e e e sbb e e e sabb e e e e anbbeeeeabreeeeanes 75
11.6.3 Applying the Additive Operators to Numbers ... 75
11.7 Bitwise Shift OPerators ... 76
11.7.1 The Left Shift Operator (<<) 76
11.7.2 The Signed Right Shift OPErator (33) ..icuuiiiiiiiiii it e et e e e sbbeeeeaaes 76
11.7.3 The Unsigned Right Shift Operator (>>>) ... 77
11.8 Relational OpPeratorSccoco i, 77
11.8.1 The LeSS-than OPEIratOr () .iiueeieiiiieeeiiiiiee ettt e at e e ettt e e st e e e s be e e e e aabe e e e e aabeeeeesabbeeeeanbbeeeesnbbeeeeane 77
11.8.2 The Greater-than OPErator (3). . ettt e et e e e e st e e e e sbb e e e e sbbeeesabreeeeanes 78
11.8.3 The Less-than-or-equal Operator (<=)i 78
11.8.4 The Greater-than-or-equal OPErator (=) oottt e e et e e e sbreeeeanes 78
11.8.5 The Abstract Relational Comparison Algorithm ... 78
11.8.6 The instanCeof OPerator......oooo i 79
11.8.7 THEIN OPEIrALOr ..o 79
R I o [U= 111 AV ©] o1=T =1] £ TP ETPP PP 80
11.9.1 The EQUAIS OPEIALOF (S5) wiiiiiiiieeiitiiee et te e sttt e sttt e sttt e e sttt e e e sttt e e e sabe e e e e anbeeeeesnbbeeesanbbeeeeabreeeeane 80
11.9.2 The Does-Not-equals OPErator (15) ittt e e e st e e et e e e sbeeeeeanes 80
11.9.3 The Abstract Equality Comparison AIGOrithm ... 80
11.9.4 The Strict EQUAIS OPEIratOr (Do) iiiiiiiii ittt e ettt ettt e e e e s et e bt e e e e e e e e s aanbbb e e e e e e e e e aannnenneeas 81
11.9.5 The Strict Does-not-equal OPErator (122) oo e et e e b e e e anes 81
11.9.6 The Strict Equality Comparison AlQOTthmM ... 82
11.10 BiNAry BitWiSE O IatOrS . ..cci i iiiiiiiiiee ettt e e e ettt ettt e e e e e s bbbt e et e e e s e e bbb beeeeaaeaaaannbebeeeeaaeseaannranneeas 82
I I R =Y o = A I Yo [Tt LI @] o 1= =1 o] £ PP UPTPP R 83
11.12 ConditioNal OPEIALOT (2 &) tioieeeiiitiiee it e ettt e e et e e e st e e e s be e e e s bt e e e e anbbeeeesnbbeeeesnbaeeeeanbaeeeeabreeeeane 84
11.13 ASSIGNMENT OPEIALOTS .oitiiieiitiiee e itete e et ee ettt e e st e e e st e e s s be e e e e sbeeeeeanbbeeeeanbeeeeesnbeeeeeabaeeeesnbreeeeane 84
e T AT 1 T o L= AN Y=Y o [g L= o A (i TP RPTPP PP 85
11.13.2 ComPOUNd ASSIGNMENT (O) uttteieteaeeiiiitiiie et e e e e ettt ettt e e e e e s bbbeeeaaaesaaaanbereeeaaaesaaannbeseeeaaeasaaannraneeeas 85
5 A oY 4 4 = W@ o 1= = o (S TP EEER 85
S - 11T £ 1= o S S USSP PP PP 86
2 T = o Yod TP O TP OUPPOUPPRTR 86
12.2 Variable STAtEMENTttt e ettt et e e e e e e bbbt e et e e e e e e e bbb e e e e e e e e e e nnrbneeeas 87

© Ecma International 2011 iii

secmd

12.2.1 Strict MOAE RESIIICIONS ..oiiiiiiiieiiie ittt e s nn e sne e e nnn e e e 88
12.3 EMPLY SEALEMENT ...t e et e e e e s e s ettt e e et e s et et e e e r s e e ene s 88
12,4 EXPreSSION STABMIENToc.iiii ittt e e e et e e e e bt e e e an b et e e e anbe e e e e anbe e e e e anbeeeeennes 89
12.5 Theif STALEMENT ...ttt e e e ettt e e e e e e e s bttt e e e e e e s e snnbe et e e e e e e s e annbaaeeaaaeas 89
12,6 ILEration STALEMENTSoiiiii ittt ss e e st st e sr e e sen e snr e e e r e e e snre e e ann e e e 90
12.6.1 The do-While StAtEMENT.......ooiiieie e nr e e nnes 90
12.6.2 The WhIle STAEMIENT ..cooiii ettt e e e e e st e e e e e e s e annbb et e e e e e e s s annbneeeaaeeas 90
12.6.3 The fOr SEALEIMENT.....ooiii i sr e e s e e r e snre e e nnn e e e 90
12.6.4 The for -iN SEALEMENTooiiii ettt e e e nn e e sre e e nnne e e 91
12.7 The contiNUE SEALEMENT ... it e e e e e s e sttt e e e e e e s e s nnbree e e e e e e s s e annbneneeaaeas 92
12.8 The Dreak SAtEMENTooiiiiiii et s r e s e s e e s r e e e snre e e nnne e e 93
12.9 ThEe return SEALEMENT ... et e e et e e e e e e e e s bttt e e eae e s e snnbbeeeeeeeessannbneeeaaeeas 93
12.10 The WIth SEALEMENT ..oooi e e e e s e e e e e e e an e e e e e eeeennes 93
12.10.1 Strict MOAE RESIIICIIONS ..ottt e e e e et e e e e e e s e st eeeaeeaesnsbeaeeeeaeesssnnnranneeaaens 94
2 I R I g =S Y (o ¢ Y = =0 = o | SRR 94
12.12 Labelled StAtEMENTS ...ccooieiii ettt e s e e e e e e e an e e e e s e e e e e e 96
12.13 The throw STALEMENToeiiiiiiie e e e e e e e e e e e e e e e e e e eenes 96
1214 TRE Y SEALEMENT ..ottt e et e e e s b et e e e et et e e e aa b et e e e aabe e e e e anbe e e e e anbeeeeenees 96
12.14.1 Strict MOAE RESIIICIIONS ..oiiieiiiiiiie ettt e e e e et e e e e e e e e st eeeaeeaesnnbeaeeeeeeesssanntenneeeaens 97
12.15 The debugger STAEMENTcvviiiiiiii e e e s e e e e e s e e e e nnes 97
13 FUNCHON DEFINITION coiiiiiie et e e e e et e e e e e e e e as e e e e e e e e ennes 98
IR 200 R g Tod A o To L= 2 LTS o o3 4T USRS 99
13.2 Creating FUNCLION ODJECTS ..ottt ettt e ettt e e s an b e e e e st et e e s aabne e e e neee 99
R T2 R | (= 11 RSP SUPURRTRTIN 100
R T | (10T =11 VL] | | IO TP PP PP PPPPPPPPPPRR 100
13.2.3 The [[ThrowTypeError]] FUNCLION ODJECTeiiiiiiiiii ettt 100
I e o T =T o T 101
14.1 Directive Prologues and the Use StriCt Dir€CtiVe....cccocieie i 102
15 Standard Built-in ECMASCIIPT ODJECES ... 102
ST A I a YT] Fo o = U o] = o 103
15.1.1 Value Properties of the Global ODjJECT ... 103
15.1.2 Function Properties of the Global ODJECTcccooeiii i 104
15.1.3 URIHandling FUNCLION PrOPertiES ...ttt 106
15.1.4 Constructor Properties of the Global ODJECTc..iiiiiiiiiii e 110
15.1.5 Other Properties of the Global ODJECT ... 111
(ST O o][=Tot @] oY1= o] £ T PR P PP PPPPPTPPPPRR 111
15.2.1 The Object Constructor Called as a FUNCLIONcoiiiiiiiiiiiiiee et 111
15.2.2 The ODJECT CONSIIUCTON ...ueiiiiiiiiiie ettt ettt e ettt e e e st bt e e e s be e e e e sbbeeeeabneeeean 112
15.2.3 Properties of the ODJECt CONSTIUCTONuiiiiiiiiii ettt sbree e 112
15.2.4 Properties of the Object Prototype ODJECTccuiiiiiieieee e 115
15.2.5 Properties Of ODJECT INSTANCESccooiiiiieeie et e e e e e e e eeeeee s 117
15.3 FUNCHON ODJECES ...ttt ettt e e e e oo e bbbttt e e e e e o e a b e be e e e e e e e e s anbbeeeeeeeeeeannbneeaaeaeas 117
15.3.1 The Function Constructor Called as a FUNCLIONooiiiiiiiiiiiiii e 117
15.3.2 The FUNCLION CONSIIUCTOTuitiiiiiie ettt ettt e ettt et e e e e e s bbbt e e e e e e e s anbbbee e e e e e s e aannbnneeaeaens 117
15.3.3 Properties of the FUNCHION CONSIIUCTON ...coiiiiiiiiiiiiiieee e 118
15.3.4 Properties of the Function Prototype ODJECTcuiiiiiiiiiiii e 118
15.3.5 Properties of FUNCLION INSTANCESccoiiiiiiiiiiiie ettt e et e e e sbaeeeean 121
L N o =\ VA O o] 1= ot £ PP PPPPRTUPTPRR 122
15.4.1 The Array Constructor Called as @ FUNCLIONcuiiiiiiiiiiiiiiee et 122
15.4.2 THe ArraY CONSIIUCTON .utiiiiiiiiiie ettt ettt ettt e e e sttt e e e s bt e e e snbb e e e e aabb e e e e sabbeeeesbbeeeeabbeeeeans 122
15.4.3 Properties of the Array CONSIIUCTOTiuuiii ittt e et e e e abaeeeeans 123
15.4.4 Properties of the Array Prototype ODJECT ... i 123
15.4.5 Properties Of Array INSTANCEScoii it e e e e e e st b e e e e e e e e e aanbraeeaaaeas 140
ST S (] g o T @ o =T o £ TP TT TP 141
15.5.1 The String Constructor Called as a FUNCLIONiiiiiiiiiiiii e 141
15.5.2 The StrHNG CONSTIUCTON oottt et e e e e e e e bbbttt e e e e e s e a b b be e e e e e e e e aaanbebee et aaeseaannbbneeaeaens 142
15.5.3 Properties of the String CONSIIUCTONuuiiiiii e e e 142

iv © Ecma International 2011

secma

15.5.4 Properties of the String Prototype ODBJECTcooiiiiiiiieiee e e 142
15.5.5 Properties Of StriNg INSTANCEScooiiuiiiiiiiiiii e e e e s abne e e e anreee s 151
ST I = Te o] [=T: 1o O o] [Tt £ T O PO PP PP OPTPPTOPPI 152
15.6.1 The Boolean Constructor Called as a FUNCLIONuuiiiiiiiiiiiiiiee e 152
15.6.2 The BOOIEAN CONSIIUCTON «iiiiiiiiiiiiiieie ettt e e e e e ettt e e e e e e s nbb e e e e e e e e sannbtteeeeeeeseannnreeeeens 152
15.6.3 Properties of the BOOIean CONSIIUCTOLciiiiuiiiiiiiiiiie et 153
15.6.4 Properties of the Boolean Prototype ODJECT........coiuiiiiiiiiiieiieeee et 153
15.6.5 Properties 0f BOOIEAN INSTANCEScccoiiiiiiiiiieie ettt e e et e e e e e s st e e e e e e s e aanreanees 153
T A V10T 4] oY= S @ o] =3 £ PSSR 154
15.7.1 The Number Constructor Called as a FUNCLIONoiiiiiiiieiiiiic e 154
15.7.2 The NUMDBDEI CONSIIUCTOT .vviiiiiiiiii ittt ettt sttt sttt e e s nabe e e s anbe e e e s anbeeeesannreeeas 154
15.7.3 Properties of the NUMDBDEr CONSTIUCTOTuuiiiiie i e e e e e e e e e e e e nnreneees 154
15.7.4 Properties of the Number Prototype ODjJECToociiiiiiiiee e 155
15.7.5 Properties of NUMDEr INSTANCESuiiiiiiiiiieii et ennee s 159
15.8 THE MAN ODJECT ...eiiiiiiiiii ittt e sttt e s bbbt e s aabb e e e s aab b e e e s anbbeeesannreee s 159
15.8.1 Value Properties of the Math ODJECT...........ooiiiiiiii e 159
15.8.2 Function Properties of the Math ODJECTcooiiiiiiii e 160
SIS T B -1 = @]] 1=Tod £ O TP SOPU PP PPPPPI 165
15.9.1 Overview of Date Objects and Definitions of Abstract Operatorscccvuveveiniiiieiniieee e, 165
15.9.2 The Date Constructor Called as @ FUNCHIONooiuuiiiiiiii e 170
15.9.3 THE DAt@ CONSIIUCTON ..uuiiiiiieiiiiiitte ettt e e e e e sttt e e e e e e e s bbb e e et e e e e e s nnbbbreeeeaeeeaannennneeas 170
15.9.4 Properties of the Date CONSTIUCIONccooii i, 171
15.9.5 Properties of the Date Prototype ObjecCt ... 172
15.9.6 Properties of Date INStANCESccooeii i 180
15.10 RegExp (Regular EXpression) ObjJeCtS. ... 180
D500, 0 PAULEINS oo a e e e e e e e e 180
15.10.2 PAtEEIN SEMANTICS .iuiiiiiiiiee ittt e e e e et te e e e e e s ettt e e aeeesaanee e e e eeaeeeaaasesbeeeraeesesanssteeeeeeessannnsennens 182
15.10.3 The RegExp Constructor Called as @ FUNCLIONiiiiiiiiiiiiiicc e 194
15.10.4 The REGEXP CONSIIUCTON ..ueiiiiiiiiiieiiiiee ettt ettt ettt e e skt et e e s bt e e e e s bbb e e e s anbee e e s annreee s 194
15.10.5 Properties of the REGEXP CONSIIUCTONuiiiiiiiiiieiiieie ettt nnaee s 195
15.10.6 Properties of the RegEXpP Prototype OBJECTooi i 195
15.10.7 Properties of REgEXP INStANCEScoooiiiiiei e 197
15,11 ErrOr OB JECES i 197
15.11.1 The Error Constructor Called as @ FUNCHIONooiuiiiiiiiiee et 198
15.12.2 THE ErTOr CONSIIUCTON ..eeiiiiie ittt ettt ettt e e e e e s eb bt et e e e e e e s b bbb e e e e e e e e s nnbbbbeeeeeeeeaannbnnneeas 198
15.11.3 Properties of the Error CONSIIUCLONcooeiiiiie e, 198
15.11.4 Properties of the Error Prototype ObjecCt ... 198
15.11.5 Properties Of ErrOr INSTANCESoiiiiiiiiie ittt sttt ettt e et e s nbbe e e e s sanneee s 199
15.11.6 Native Error Types Used in This Standardcocueeiiiiiiiiiiiiie e 199
15.11.7 NatiVEEITOr ODJECT STIUCTUIEiiii ittt st e bt e e s bbe e e e s sanneee s 200
1512 THE JSON OBJECT ..ottt b et b bt e e s bbb et e s bbbt e e e eab e e e e s eabbe e e s nnnteee s 201
15.12.1 The JSON GIaMMA ...uuuiiiiieeeieiieiiieeeteeeaasttteereeeesssaateraeeeeaesesaasstaeereaeseaaassssaeereaesssaansssneeeeeesssnsssssneees 202
15.12.2 PArSE (TEXE [, FEVIVET]) tiiiiiiiiiitiiie ettt ettt et e e st e e s bbbt e e sttt e e s ab e e e e s anbbeeesannreeens 203
15.12.3 stringify (value [, replacer [, SPACE]] - e e ettt e e et e e e e e e e aneeeeeeas 205
G = £ 0] £ S PP PPPPPPPPR 208
Annex A (informative) Grammar SUMMAIYoeiiiooiiiiiieeeaa ettt ee e e e s aebeeeeeaaeeaaaaenbeeeeeaaassaabnrreeeaaaaas 211
Annex B (informative) COomMPatiDilityoooooiiiiii et e e e e e 231
Annex C (informative) The Strict Mode Of ECMASCIIPTveiiiiiiiiiiiiiieee et 235
Annex D (informative) Corrections and Clarifications in the 5™ Edition with Possible 3" Edition

ComPAtiDIlITY IMPACT ..ottt e et e e e st b e e e st b e e e e s bbeeeesbbeeeeane 237
Annex E (informative) Additions and Changes in the 5™ Edition that Introduce Incompatibilities

Wt the 3™ EQItION ..c..oveeceeceeciececeeee et 239
Annex F (informative) Technically Significant Corrections and Clarifications in the 5.1 Edition 243

© Ecma International 2011 Y

Vi

secmna

© Ecma International 2011

secma

Introduction

This Ecma Standard is based on several originating technologies, the most well known being JavaScript
(Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first
appeared in that companyds Navigator 2.0 browseape |t
and in all browsers from Microsoft starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. The first edition of this Ecma Standard was
adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and
approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998
approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the
first and the second edition are editorial in nature.

The third edition of the Standard introduced powerful regular expressions, better string handling, new control
statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor
changes in anticipation of forthcoming internationalisation facilities and future language growth. The third
edition of the ECMAScript standard was adopted by the Ecma General Assembly of December 1999 and
published as ISO/IEC 16262:2002 in June 2002.

Since publication of the third edition, ECMAScript has achieved massive adoption in conjunction with the
World Wide Web where it has become the programming language that is supported by essentially all web
browsers. Significant work was done to develop a fourth edition of ECMAScript. Although that work was not
completed and not published! as the fourth edition of ECMAScript, it informs continuing evolution of the
language. The fifth edition of ECMAScript (published as ECMA-262 5" edition) codifies de facto
interpretations of the language specification that have become common among browser implementations and
adds support for new features that have emerged since the publication of the third edition. Such features
include accessor properties, reflective creation and inspection of objects, program control of property
attributes, additional array manipulation functions, support for the JSON object encoding format, and a strict
mode that provides enhanced error checking and program security.

This present edition 5.1 of the ECMAScript Standard is fully aligned with third edition of the international
standard ISO/IEC 16262:2011.

ECMAScript is a vibrant language and the evolution of the language is not complete. Significant technical
enhancement will continue with future editions of this specification.

This Ecma Standard has been adopted by the General Assembly of June 2011.

INot e: Pl ease note that for ECMAScri pt -266d2i tEdoint i40 nt hded Bacansa rs
used in the Ecma publicati-d2h2 pEdicteisen dheaefane EGBEMANt er |
exist.

© Ecma International 2011 Vii

oecma

Viii © Ecma International 2011

secmd

ECMAScript Language Specification

1 Scope

This Standard defines the ECMAScript scripting language.

2 Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects,
properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of this Standard shall interpret characters in conformance with the Unicode
Standard, Version 3.0 or later and ISO/IEC 10646-1 with either UCS-2 or UTF-16 as the adopted encoding
form, implementation level 3. If the adopted ISO/IEC 10646-1 subset is not otherwise specified, it is presumed
to be the BMP subset, collection 300. If the adopted encoding form is not otherwise specified, it presumed to
be the UTF-16 encoding form.

A conforming implementation of ECMAScript is permitted to provide additional types, values, objects,
properties, and functions beyond those described in this specification. In particular, a conforming
implementation of ECMAScript is permitted to provide properties not described in this specification, and
values for those properties, for objects that are described in this specification.

A conforming implementation of ECMAScript is permitted to support program and regular expression syntax
not described in this specification. In particular, a conforming implementation of ECMAScript is permitted to
supportprograms ynt ax t hat makes use of t he 6.0.2afthisgpexificatiers er v e d

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 9899:1996, Programming Languages i C, including amendment 1 and technical corrigenda 1 and 2

ISO/IEC 10646-1:1993, Information Technology i Universal Multiple-Octet Coded Character Set (UCS) plus
its amendments and corrigenda

4 Overview
This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to be
computationally self-sufficient; indeed, there are no provisions in this specification for input of external data or
output of computed results. Instead, it is expected that the computational environment of an ECMAScript
program will provide not only the objects and other facilities described in this specification but also certain
environment-specific host objects, whose description and behaviour are beyond the scope of this specification
except to indicate that they may provide certain properties that can be accessed and certain functions that can
be called from an ECMAScript program.

© Ecma International 2011 1

secma

A scripting language is a programming language that is used to manipulate, customise, and automate the
facilities of an existing system. In such systems, useful functionality is already available through a user
interface, and the scripting language is a mechanism for exposing that functionality to program control. In this
way, the existing system is said to provide a host environment of objects and facilities, which completes the
capabilities of the scripting language. A scripting language is intended for use by both professional and non-
professional programmers.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web
pages in browsers and to perform server computation as part of a Web-based client-server architecture.
ECMASCcript can provide core scripting capabilities for a variety of host environments, and therefore the core
scripting language is specified in this document apart from any particular host environment.

Some of the facilities of ECMAScript are similar to those used in other programming languages; in particular
Javaa, Self, and Scheme as described in:

Gosling, James, Bill Joy and Guy Steele. The Java® Language Specification. Addison Wesley Publishing Co.,
1996.

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference Proceedings, pp.
2271 241, Orlando, FL, October 1987.

IEEE Standard for the Scheme Programming Language. IEEE Std 1178-1990.

4.1 Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for instance,
objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history, cookies,
and input/output. Further, the host environment provides a means to attach scripting code to events such as
change of focus, page and image loading, unloading, error and abort, selection, form submission, and mouse
actions. Scripting code appears within the HTML and the displayed page is a combination of user interface
elements and fixed and computed text and images. The scripting code is reactive to user interaction and there
is no need for a main program.

A web server provides a different host environment for server-side computation including objects representing
requests, clients, and files; and mechanisms to lock and share data. By using browser-side and server-side
scripting together, it is possible to distribute computation between the client and server while providing a
customised user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the
ECMAScript execution environment.

4.2 Language Overview

The following is an informal overview of ECMAScriptd not all parts of the language are described. This
overview is not part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript
program is a cluster of communicating objects. An ECMAScript object is a collection of properties each with
zero or more attributes that determine how each property can be usedd for example, when the Writable
attribute for a property is set to false, any attempt by executed ECMAScript code to change the value of the
property fails. Properties are containers that hold other objects, primitive values, or functions. A primitive
value is a member of one of the following built-in types: Undefined, Null, Boolean, Number, and String; an
object is a member of the remaining built-in type Object; and a function is a callable object. A function that is
associated with an object via a property is a method.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities. These

built-in objects include the global object, the Object object, the Function object, the Array object, the String
object, the Boolean object, the Number object, the Math object, the Date object, the RegExp object, the

2 © Ecma International 2011

secma

JSON object, and the Error objects Error, EvalError, RangeError, ReferenceError, SyntaxError,
TypeError and URIError.

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary operations,
multiplicative operators, additive operators, bitwise shift operators, relational operators, equality operators,
binary bitwise operators, binary logical operators, assignment operators, and the comma operator.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve as
an easy-to-use scripting language. For example, a variable is not required to have its type declared nor are
types associated with properties, and defined functions are not required to have their declarations appear
textually before calls to them.

4.2.1 Objects

ECMAScript does not use classes such as those in C++, Smalltalk, or Java. Instead objects may be created in
various ways including via a literal notation or via constructors which create objects and then execute code
that initialises all or part of them by assigning initial values to their properties. Each constructor is a function
that has a prpoptge t gthatrisausee td imflement prototype-based inheritance and shared
properties. Objects are created by using constructors in new expressions; for example, new
Date(2009,11) creates a new Date object. Invoking a constructor without using new has consequences that
depend on the constructor. For example, Date() produces a string representation of the current date and
time rather than an object.

Every object created by a constructor has an implicit reference (called the o b | e pratofyse) to the value of
it s consprototypet O mopesty. Rurthermore, a prototype may have a non-null implicit reference to its
prototype, and so on; this is called the prototype chain. When a reference is made to a property in an object,
that reference is to the property of that name in the first object in the prototype chain that contains a property
of that name. In other words, first the object mentioned directly is examined for such a property; if that object
contains the named property, that is the property to which the reference refers; if that object does not contain
the named property, the prototype for that object is examined next; and so on.

A S >
R CE implicit prototype link
prototype | CFo .
P1 J
- CEP1 explicit prototype property

......... ot L of, cfy cfy cfg
ql ql al at o
q2 q2 a2 a2 %@

Figure 1 8 Object/Prototype Relationships
In a class-based object-oriented language, in general, state is carried by instances, methods are carried by

classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are carried
by objects, and structure, behaviour, and state are all inherited.

© Ecma International 2011 3

secma

All objects that do not directly contain a particular property that their prototype contains share that property
and its value. Figure 1 illustrates this:

CF is a constructor (and also an object). Five objects have been created by using new expressions: cfy, cf,,
cfs, cfy, and cfs. Each of these objects contains properties named g1 and g2. The dashed lines represent the
implicit prototype relationship; so, for example, cf;0 prototype is CF,. The constructor, CF, has two properties
itself, named P1 and P2, which are not visible to CFy, cfy, cf,, cf, cfs, or cfs. The property named CFP1in CF,
is shared by cf;, cfy, cfs, cfs, and cfs (but not by CF), as are any properties found in CF,6 @mplicit prototype
chain that are not named g1, g2, or CFP1 Notice that there is no implicit prototype link between CF and CF,,.

Unlike class-based object languages, properties can be added to objects dynamically by assigning values to
them. That i s, constructors are not required to n
properties. In the above diagram, one could add a new shared property for cf,, cf,, cfs, cfs, and cfs by
assigning a new value to the property in CF,.

4.2.2 The Strict Variant of ECMAScript

The ECMAScript Language recognises the possibility that some users of the language may wish to restrict
their usage of some features available in the language. They might do so in the interests of security, to avoid
what they consider to be error-prone features, to get enhanced error checking, or for other reasons of their
choosing. In support of this possibility, ECMAScript defines a strict variant of the language. The strict variant
of the language excludes some specific syntactic and semantic features of the regular ECMAScript language
and modifies the detailed semantics of some features. The strict variant also specifies additional error
conditions that must be reported by throwing error exceptions in situations that are not specified as errors by
the non-strict form of the language.

The strict variant of ECMAScript is commonly referred to as the strict mode of the language. Strict mode
selection and use of the strict mode syntax and semantics of ECMAScript is explicitly made at the level of
individual ECMAScript code units. Because strict mode is selected at the level of a syntactic code unit, strict
mode only imposes restrictions that have local effect within such a code unit. Strict mode does not restrict or
modify any aspect of the ECMAScript semantics that must operate consistently across multiple code units. A
complete ECMAScript program may be composed for both strict mode and non-strict mode ECMAScript code
units. In this case, strict mode only applies when actually executing code that is defined within a strict mode
code unit.

In order to conform to this specification, an ECMAScript implementation must implement both the full
unrestricted ECMAScript language and the strict mode variant of the ECMAScript language as defined by this
specification. In addition, an implementation must support the combination of unrestricted and strict mode
code units into a single composite program.

4.3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

43.1

type

set of data values as defined in Clause 8 of this specification

4.3.2

primitive value

member of one of the types Undefined, Null, Boolean, Number, or String as defined in Clause 8
NOTE A primitive value is a datum that is represented directly at the lowest level of the language implementation.
4.3.3

object

member of the type Object

NOTE An object is a collection of properties and has a single prototype object. The prototype may be the null value.

4 © Ecma International 2011

ame

or

secma

434
constructor
function object that creates and initialises objects

NOTE The value of protatypen ©t rpu otpeerrdésy i s a prototype object ¢ttt
and shared properties.

435

prototype

object that provides shared properties for other objects

NOTE When a constructor creates an object, t lpratotypeo boj epcrto pi enmpt
for the purpose of resolving property references. The const r upcototgpe 56 Pr operty can be r e
program expression constructor .prototype and properties added to an object

inheritance, by all objects sharing the prototype. Alternatively, a new object may be created with an explicitly specified
prototype by using the Object.create built-in function.

4.3.6

native object

object in an ECMAScript implementation whose semantics are fully defined by this specification rather than by
the host environment

NOTE Standard native objects are defined in this specification. Some native objects are built-in; others may be
constructed during the course of execution of an ECMAScript program.

4.3.7

built-in object

object supplied by an ECMAScript implementation, independent of the host environment, that is present at the
start of the execution of an ECMAScript program

NOTE Standard built-in objects are defined in this specification, and an ECMAScript implementation may specify and
define others. Every built-in object is a native object. A built-in constructor is a built-in object that is also a constructor.

4.3.8
host object
object supplied by the host environment to complete the execution environment of ECMAScript

NOTE Any object that is not native is a host object.

4.3.9
undefined value
primitive value used when a variable has not been assigned a value

4.3.10
Undefined type
type whose sole value is the undefined value

4311
null value
primitive value that represents the intentional absence of any object value

4.3.12
Null type
type whose sole value is the null value

4.3.13
Boolean value
member of the Boolean type

NOTE There are only two Boolean values, true and false.

© Ecma International 2011 5

secma

4.3.14
Boolean type
type consisting of the primitive values true and false

4.3.15
Boolean object
member of the Object type that is an instance of the standard built-in Boolean constructor

NOTE A Boolean object is created by using the Boolean constructor in a new expression, supplying a Boolean
value as an argument. The resulting object has an internal property whose value is the Boolean value. A Boolean object
can be coerced to a Boolean value.

4.3.16
String value
primitive value that is a finite ordered sequence of zero or more 16-bit unsigned integer

NOTE A String value is a member of the String type. Each integer value in the sequence usually represents a single
16-bit unit of UTF-16 text. However, ECMAScript does not place any restrictions or requirements on the values except that
they must be 16-bit unsigned integers.

4.3.17
String type
set of all possible String values

4.3.18
String object
member of the Object type that is an instance of the standard built-in String constructor

NOTE A String object is created by using the String constructor in a new expression, supplying a String value as

an argument. The resulting object has an internal property whose value is the String value. A String object can be coerced
to a String value by calling the String constructor as a function (15.5.1).

4.3.19
Number value
primitive value corresponding to a double-precision 64-bit binary format IEEE 754 value

NOTE A Number value is a member of the Number type and is a direct representation of a number.

4.3.20

Number type

set of al | possible Number -sabdlubmbsron¢Nall)nygathessppobsat

negative infinity

4.3.21
Number object
member of the Object type that is an instance of the standard built-in Number constructor

NOTE A Number object is created by using the Number constructor in a new expression, supplying a Number value

as an argument. The resulting object has an internal property whose value is the Number value. A Number object can be
coerced to a Number value by calling the Number constructor as a function (15.7.1).

4.3.22
Infinity
number value that is the positive infinite Number value

4.3.23

NaN
number value thatisal EEE 7 5aNuimllmgr 0 val ue

6 © Ecma International 2011

secma

4.3.24

function

member of the Object type that is an instance of the standard built-in Function constructor and that may be
invoked as a subroutine

NOTE In addition to its named properties, a function contains executable code and state that determine how it
behaves when i nvoked. or/ayhal lbeevtittenomEECSAScriptd e may

4.3.25
built-in function
built-in object that is a function

NOTE Examples of built-in functions include parseint and Math.exp . An implementation may provide
implementation-dependent built-in functions that are not described in this specification.

4.3.26
property
association between a name and a value that is a part of an object

NOTE Depending upon the form of the property the value may be represented either directly as a data value (a
primitive value, an object, or a function object) or indirectly by a pair of accessor functions.

4.3.27
method
function that is the value of a property

NOTE When a function is called as a method of an object, the object is passed to the function as its this value.

4.3.28
built-in method
method that is a built-in function

NOTE Standard built-in methods are defined in this specification, and an ECMAScript implementation may specify
and provide other additional built-in methods.

4.3.29
attribute
internal value that defines some characteristic of a property

4.3.30

own property

property that is directly contained by its object
4.3.31

inherited property

property of an object that is not an own proper t y but is a property (either
prototype

5 Notational Conventions
5.1 Syntactic and Lexical Grammars

5.1.1 Context-Free Grammars
A context-free grammar consists of a number of productions. Each production has an abstract symbol called a

nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal symbols as its
right-hand side. For each grammar, the terminal symbols are drawn from a specified alphabet.

© Ecma International 2011 7

secma

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given
context-free grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-hand
side of a production for which the nonterminal is the left-hand side.

5.1.2 The Lexical and RegExp Grammars

A lexical grammar for ECMAScript is given in clause 7. This grammar has as its terminal symbols characters
(Unicode code units) that conform to the rules for SourceCharactedefined in Clause 6. It defines a set of
productions, starting from the goal symbol InputElementDivor InputElementRegExpthat describe how
sequences of such characters are translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar for

ECMAScript and are called ECMAScript tokens. These tokens are the reserved words, identifiers, literals, and

punctuators of the ECMAScript language. Moreover, line terminators, although not considered to be tokens,

also become part of the stream of input elements and guide the process of automatic semicolon insertion (7.9).

Simple white space and single-line comments are discarded and do not appear in the stream of input

elements for the syntactic grammar. A MultiLineCommen{ t hat i s, a confme*hd mwedgamel d D9 |
of whether it spans more than one line) is likewise simply discarded if it contains no line terminator; but if a
MultiLineCommentontains one or more line terminators, then it is replaced by a single line terminator, which

becomes part of the stream of input elements for the syntactic grammar.

A RegExp grammar for ECMAScript is given in 15.10. This grammar also has as its terminal symbols the
characters as defined by SourceCharacterit defines a set of productions, starting from the goal symbol Pattern
that describe how sequences of characters are translated into regular expression patterns.

Productions of the lexicaland Re gExp grammars are distingouiass esle hbayr ahtaivni
punctuation. The lexical and RegExp grammars share some productions.

5.1.3 The Numeric String Grammar

Another grammar is used for translating Strings into numeric values. This grammar is similar to the part of the
lexical grammar having to do with numeric literals and has as its terminal symbols SourceCharacter This
grammar appears in 9.3.1.

Productions of the numeric string gr ammarpugctuaiondi sti ngui s

5.1.4 The Syntactic Grammar

The syntactic grammar for ECMAScript is given in clauses 11, 12, 13 and 14. This grammar has ECMAScript
tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of productions, starting
from the goal symbol Program that describe how sequences of tokens can form syntactically correct
ECMAScript programs.

When a stream of characters is to be parsed as an ECMAScript program, it is first converted to a stream of
input elements by repeated application of the lexical grammar; this stream of input elements is then parsed by
a single application of the syntactic grammar. The program is syntactically in error if the tokens in the stream
of input elements cannot be parsed as a single instance of the goal nonterminal Program with no tokens left
over.

Productions of the syntactic grammar :0araes diusntcitrugauii somed b

The syntactic grammar as presented in clauses 11, 12, 13 and 14 is actually not a complete account of which
token sequences are accepted as correct ECMAScript programs. Certain additional token sequences are also
accepted, namely, those that would be described by the grammar if only semicolons were added to the
sequence in certain places (such as before line terminator characters). Furthermore, certain token sequences
that are described by the grammar are not considered acceptable if a terminator character appears in certain
fawkwardo pl aces.

8 © Ecma International 2011

secma

5.1.5 The JSON Grammar

The JSON grammar is used to translate a String describing a set of ECMAScript objects into actual objects.
The JSON grammar is given in 15.12.1.

The JSON grammar consists of the JSON lexical grammar and the JSON syntactic grammar. The JSON
lexical grammar is used to translate character sequences into tokens and is similar to parts of the ECMAScript
lexical grammar. The JSON syntactic grammar describes how sequences of tokens from the JSON lexical
grammar can form syntactically correct JSON object descriptions.

Productions of the JSON lexical gramma r ar e di stinguished :byahasviepagr
punctuation. The JSON lexical grammar uses some productions from the ECMAScript lexical grammar. The
JSON syntactic grammar is similar to parts of the ECMAScript syntactic grammar. Productions of the JSON
syntactic grammar are di std ngsuisepealr atyi nug i mugn cotnwea tciod o

5.1.6 Grammar Notation

Terminal symbols of the lexical, RegExp, and numeric string grammars, and some of the terminal symbols of
the other grammars, are shown in fixed width font, both in the productions of the grammars and
throughout this specification whenever the text directly refers to such a terminal symbol. These are to appear
in a program exactly as written. All terminal symbol characters specified in this way are to be understood as
the appropriate Unicode character from the ASCII range, as opposed to any similar-looking characters from
other Unicode ranges.

Nonterminal symbols are shown in italic type. The definition of a nonterminal is introduced by the name of the
nonterminal being defined followed by one or more colons. (The number of colons indicates to which grammar
the production belongs.) One or more alternative right-hand sides for the nonterminal then follow on
succeeding lines. For example, the syntactic definition:

WhileStatement
while (Expressior) Statement

states that the nonterminal WhileStatementepresents the token while , followed by a left parenthesis token,
followed by an Expressionfollowed by a right parenthesis token, followed by a StatementThe occurrences of
Expressiorand Statemenére themselves nonterminals. As another example, the syntactic definition:

ArgumentList
AssignmentExpression
ArgumentList, AssignmentExpression

states that an ArgumentListmay represent either a single AssignmentExpressiamr an ArgumentList followed by
a comma, followed by an AssignmentExpressioithis definition of ArgumentLists recursive, that is, it is defined
in terms of itself. The result is that an ArgumentListmay contain any positive number of arguments, separated
by commas, where each argument expression is an AssignmentExpressiorSuch recursive definitions of
nonterminals are common.

The subscr ipot,edwhsiucthf ilkayi appear after a t eoptiomalrsyambol.or |
The alternative containing the optional symbol actually specifies two right-hand sides, one that omits the
optional element and one that includes it. This means that:

VariableDeclaration:
Identifier Initialiser,y,

is a convenient abbreviation for:
VariableDeclaration:

Identifier
Identifier Initialiser

© Ecma International 2011 9

secma

and that:

IterationStatement
for (ExpressionNolg,; ; Expressiog, ; Expressiog,) Statement

is a convenient abbreviation for:
IterationStatement
for (; Expressiog, ; Expressiog,) Staement

for (ExpressionNoln; Expressiog, ; Expressiog,) Statement

which in turn is an abbreviation for:

IterationStatement
for (;; Expressiog,) Statement
for (; Expression; Expressiop,) Statement
for (ExpressionNoln; ; Expressiop,) Satement

for (ExpressionNoln; Expression; Expressiog,) Statement

which in turn is an abbreviation for:

IterationStatement
for (;;) Statement
for (;; Expression) Statement
for (; Expression;) Statement
for (; Expression; Expression) Statement

for (ExpressionNoln ;) Statement

for (ExpressionNoln; Expression) Statement

for (ExpressionNoln Expression;) Statement

for (ExpressionNoln Expression; Expression) Statement

so the nonterminal IterationStatemenrdctually has eight alternative right-hand sides.
When t heomwofddd ofil ow the colon(s) in a grammar definitio
symbols on the following line or lines is an alternative definition. For example, the lexical grammar for

ECMAScript contains the production:

NonZeroDigit:: one of
123456789

which is merely a convenient abbreviation for:

NonZeroDigit::

O©CoO~NOOTA~,WNPE

I f the [eppl0o asappéar s -hand stdd @ a pradgction, it indicates that the production's right-
hand side contains no terminals or nonterminals.

I f t he [dokhheadiiss#0 fla p p e ar s -hamd sitehoéa produgtiort, it indicates that the production

may not be used if the immediately following input token is a member of the given set The setcan be written
as a list of terminals enclosed in curly braces. For convenience, the set can also be written as a nonterminal,

10 © Ecma International 2011

secma

in which case it represents the set of all terminals to which that nonterminal could expand. For example, given
the definitions

DecimalDigit:: one of
0123456789

DecimalDigits::
DecimalDigit
DecimalDigits DecimalDigit

the definition

LookaheadExample
N [lookahead 1 {1, 3, 5, 7, 9}] DecimalDigits
DecimalDigit [lookahead T DecimalDigit]

matches either the letter n followed by one or more decimal digits the first of which is even, or a decimal digit
not followed by another decimal digit.

| f t he [nplUnaTeemmaorheil0 a p p e ar s -hamd sidetoka produgtibntof the syntactic grammar, it
indicates that the production is a restricted production: it may not be used if a LineTerminatoroccurs in the
input stream at the indicated position. For example, the production:

ThrowStatement
throw [no LineTerminatothere] EXpression

indicates that the production may not be used if a LineTerminatoroccurs in the program between the throw
token and the Expression

Unless the presence of a LineTerminatoris forbidden by a restricted production, any number of occurrences of
LineTerminatormay appear between any two consecutive tokens in the stream of input elements without
affecting the syntactic acceptability of the program.

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a
multi-character token, it represents the sequence of characters that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the phrase
foutnotd and then indicating the expathmegprodudtien: t o be excl ud

Identifier ::
IdentifierNamebut not ReservedWord

means that the nonterminal Identifier may be replaced by any sequence of characters that could replace
IdentifierNameprovided that the same sequence of characters could not replace ReseredWord

Finally, a few nonterminal symbols are described by a descriptive phrase in sans-serif type in cases where it
would be impractical to list all the alternatives:

SourceCharacter:
any Unicode code unit

5.2 Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to
precisely specify the required semantics of ECMAScript language constructs. The algorithms are not intended
to imply the use of any specific implementation technique. In practice, there may be more efficient algorithms
available to implement a given feature.

© Ecma International 2011 11

secma

In order to facilitate their use in multiple parts of this specification, some algorithms, called abstract operations,
are named and written in parameterised functional form so that they may be referenced by name from within
other algorithms.

When an algorithm is to producreturnxd vias uwes eacs tao riersduilctagt e htel

the algorithm is the value of x and that the algorithm should terminate. The notation Resultf) is used as
short handesultofstepidt h e

For clarity of expression, algorithm steps may be subdivided into sequential substeps. Substeps are indented
and may themselves be further divided into indented substeps. Outline humbering conventions are used to
identify substeps with the first level of substeps labelled with lower case alphabetic characters and the second
level of substeps labelled with lower case roman numerals. If more than three levels are required these rules
repeat with the fourth level using numeric labels. For example:

1. Toplevel step

a. Substep.

b. Substep
i Subsubstep.
il. Subsubstep.

1. Subsubsubstep

a Subsubsubsubstep

or substep may be writ
y applied if
ation of the preceding

o >
D D w
S O

p
r n i
h eg i 0O predicate step
A step may specify the iterative application of its substeps.

A step may assert an invariant condition of its algorithm. Such assertions are used to make explicit
algorithmic invariants that would otherwise be implicit. Such assertions add no additional semantic
requirements and hence need not be checked by an implementation. They are used simply to clarify
algorithms.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the mathematical
functions defined later in this clause should always be understood as computing exact mathematical results
on mathematical real numbers, which do not include infinities and do not include a negative zero that is
distinguished from positive zero. Algorithms in this standard that model floating-point arithmetic include explicit
steps, where necessary, to handle infinities and signed zero and to perform rounding. If a mathematical
operation or function is applied to a floating-point number, it should be understood as being applied to the
exact mathematical value represented by that floating-point number; such a floating-point number must be
finite, and if it is +0 or - 0 then the corresponding mathematical value is simply 0.

The mathematical function absf) yields the absolute value of x, which is - x if x is hegative (less than zero) and
otherwise is x itself.

The mathematical function sign) yields 1 if x is positive and - 1 if x is negative. The sign function is not used in
this standard for cases when x is zero.

The notxamodulaydg y rfiust be finite and nonzero) computes a value k of the same sign as y (or zero)
such that absk) < absy) andx- k=g 3 y for some integer g.

The mathematical function floor(x) yields the largest integer (closest to positive infinity) that is not larger than x.

NOTE floor(x) = x- (x modulo 1)

fanal gorithm is defined to fAthrow an exceptiono,
returned. The calling algorithms are also terminated, until an algorithm step is reached that explicitly deals
with the exception, using terminology such as @Al f an exception was thro
has been encountered the exception is no longer considered to have occurred.

12 © Ecma International 2011

ten as an fcasepthepubstaps c at e
the predicate is true. | f a step
iif

at

t

f

he

execut i

wneéo.

C

secma

6 Source Text

ECMAScript source text is represented as a sequence of characters in the Unicode character encoding,
version 3.0 or later. The text is expected to have been normalised to Unicode Normalization Form C
(canonical composition), as described in Unicode Technical Report #15. Conforming ECMAScript
implementations are not required to perform any normalisation of text, or behave as though they were
performing normalisation of text, themselves. ECMAScript source text is assumed to be a sequence of 16-bit
code units for the purposes of this specification. Such a source text may include sequences of 16-bit code
units that are not valid UTF-16 character encodings. If an actual source text is encoded in a form other than
16-bit code units it must be processed as if it was first converted to UTF-16.

Syntax
SourceCharacter:
any Unicode code unit
Throughouttherestof t hi s document, the phrase ficode unito and
16-bit unsigned value used to represent a single 16-b i t unit of text. The phrase

used to refer to the abstract linguistic or typographical unit represented by a single Unicode scalar value

(which may be longer than 16 bits and thus may be represented by more than one code unit). The phrase
fcode pointod refers to such a Unicode scal ar semtedbye.
single Unicode scalar values: the components of a cor
characters, o even though a user might think of the wh

In string literals, regular expression literals, and identifiers, any character (code unit) may also be expressed
as a Unicode escape sequence consisting of six characters, namely \ u plus four hexadecimal digits. Within a
comment, such an escape sequence is effectively ignored as part of the comment. Within a string literal or
regular expression literal, the Unicode escape sequence contributes one character to the value of the literal.
Within an identifier, the escape sequence contributes one character to the identifier.

NOTE Although this document someti mes refers to a fitransformationd bet weé
16-bi t unsigned integer that is the code wunit of that <chara
within a fAstringo i s até6biiwnsignedvaluepr esented using tha

ECMAScript differs from the Java programming language in the behaviour of Unicode escape sequences. In a
Java program, if the Unicode escape sequence \ uOOOA, for example, occurs within a single-line comment, it
is interpreted as a line terminator (Unicode character 000A is line feed) and therefore the next character is not
part of the comment. Similarly, if the Unicode escape sequence \ uO00A occurs within a string literal in a Java
program, it is likewise interpreted as a line terminator, which is not allowed within a string literald one must
write \ n instead of \ UOOOA to cause a line feed to be part of the string value of a string literal. In an
ECMAScript program, a Unicode escape sequence occurring within a comment is never interpreted and
therefore cannot contribute to termination of the comment. Similarly, a Unicode escape sequence occurring
within a string literal in an ECMAScript program always contributes a character to the String value of the literal
and is never interpreted as a line terminator or as a quote mark that might terminate the string literal.

7 Lexical Conventions

The source text of an ECMAScript program is first converted into a sequence of input elements, which are
tokens, line terminators, comments, or white space. The source text is scanned from left to right, repeatedly
taking the longest possible sequence of characters as the next input element.

There are two goal symbols for the lexical grammar. The InputElementDivsymbol is used in those syntactic
grammar contexts where a leading division (/) or division-assignment (/=) operator is permitted. The
InputElementRegExpymbol is used in other syntactic grammar contexts.

NOTE There are no syntactic grammar contexts where both a leading division or division-assignment, and a leading
RegularExpressionLiteraare permitted. This is not affected by semicolon insertion (see 7.9); in examples such as the
following:

© Ecma International 2011 13

secma

a=b
/hi/g.exec(c).map(d);

where the first non-whitespace, non-comment character after a LineTerminatoris slash (/) and the syntactic context allows
division or division-assignment, no semicolon is inserted at the LineTerminator That is, the above example is interpreted in
the same way as:

a=b/hi/g. exec (c).map(d);

Syntax

InputElementDiv:
WhiteSpace
LineTerminator
Comment
Token
DivPunctuator

InputElementRegExp
WhiteSpace
LineTerminator
Comment
Token
RegularExpressionLiteral

7.1 Unicode Format-Control Characters

The Unicode format-c ont r ol characters (i .e., t he ¢ hde rCharatterr s

Database such as LEFT-TO-RIGHT MARK Or RIGHT-TO-LEFT MARK) are control codes used to control the formatting
of a range of text in the absence of higher-level protocols for this (such as mark-up languages).

It is useful to allow format-control characters in source text to facilitate editing and display. All format control
characters may be used within comments, and within string literals and regular expression literals.

<ZWNJ>and <ZWJ> are format-control characters that are used to make necessary distinctions when forming
words or phrases in certain languages. In ECMAScript source text, <ZWNJ>and <ZWJ>may also be used in
an identifier after the first character.

<BOM> is a format-control character used primarily at the start of a text to mark it as Unicode and to allow
detection of the text's encoding and byte order. <BOM> characters intended for this purpose can sometimes
also appear after the start of a text, for example as a result of concatenating files. <BOM> characters are
treated as white space characters (see 7.2).

The special treatment of certain format-control characters outside of comments, string literals, and regular
expression literals is summarised in Table 1.

Table 18 Format-Control Character Usage

Code Unit Value Name Formal Name Usage

\ u200C Zero width non-joiner <ZWNJ> IdentifierPart
\'u200D Zero width joiner <ZWJ> IdentifierPart
\ UFEFF Byte Order Mark <BOM> Whitespace

7.2 White Space

White space characters are used to improve source text readability and to separate tokens (indivisible lexical
units) from each other, but are otherwise insignificant. White space characters may occur between any two
tokens and at the start or end of input. White space characters may also occur within a StringLiteral or a

14 © Ecma International 2011

secmd

RegularExpressionLital (where they are considered significant characters forming part of the literal value) or
within a Commentbut cannot appear within any other kind of token.

The ECMASCcript white space characters are listed in Table 2.

Table 2 6 Whitespace Characters

Code Unit Value Name Formal Name

\ u0009 Tab <TAB>

\ uo00B Vertical Tab <VT>

\ uoooC Form Feed <FF>

\ u0020 Space <SP>

\ uOOAO No-break space <NBSP>

\ UFEFF Byte Order Mark <BOM>

Ot her <cat eg Any other Unicode <USP>
Aispace sepa

ECMAScript implementations must recognise all of the white space characters defined in Unicode 3.0. Later
editions of the Unicode Standard may define other white space characters. ECMAScript implementations may
recognise white space characters from later editions of the Unicode Standard.

Syntax

WhiteSpace
<TAB>
<VT>
<FF>
<SP>
<NBSP>
<BOM>
<USP>

7.3 Line Terminators

Like white space characters, line terminator characters are used to improve source text readability and to
separate tokens (indivisible lexical units) from each other. However, unlike white space characters, line
terminators have some influence over the behaviour of the syntactic grammar. In general, line terminators
may occur between any two tokens, but there are a few places where they are forbidden by the syntactic
grammar. Line terminators also affect the process of automatic semicolon insertion (7.9). A line terminator
cannot occur within any token except a StringLiteral Line terminators may only occur within a StringLiteral
token as part of a LineContiruation

A line terminator can occur within a MultiLineCommen({7.4) but cannot occur within a SingleLineComment

Line terminators are included in the set of white space characters that are matched by the \ s class in regular
expressions.

The ECMAScript line terminator characters are listed in Table 3.

Table 30 Line Terminator Characters

Code Unit Value Name Formal Name
\ UOOOA Line Feed <LF>
\ uod00D Carriage Return <CR>
\ u2028 Line separator <LS>
\ u2029 Paragraph separator <PS>

© Ecma International 2011 15

secma

Only the characters in Table 3 are treated as line terminators. Other new line or line breaking characters are
treated as white space but not as line terminators. The character sequence <CR><LF> is commonly used as
a line terminator. It should be considered a single character for the purpose of reporting line numbers.

Syntax

LineTerminator::
<LF>
<CR>
<LS>
<PS>

LineTerminatorSequence
<LF>
<CR>[lookahead 1 <LF>]
<LS>
<PS>
<CR> <LF>

7.4 Comments

Comments can be either single or multi-line. Multi-line comments cannot nest.

Because a single-line comment can contain any character except a LineTerminatorcharacter, and because of
the general rule that a token is always as long as possible, a single-line comment always consists of all
characters from the // marker to the end of the line. However, the LineTerminatorat the end of the line is not
considered to be part of the single-line comment; it is recognised separately by the lexical grammar and
becomes part of the stream of input elements for the syntactic grammar. This point is very important, because
it implies that the presence or absence of single-line comments does not affect the process of automatic

semicolon insertion (see 7.9).

Comments behave like white space and are discarded except that, if a MultiLineCommentcontains a line
terminator character, then the entire comment is considered to be a LineTerminatorfor purposes of parsing by

the syntactic grammar.

Syntax

Comment:
MultiLineComment
SingleLineComment

MultiLineComment:
* MultiLineCommentChagg; */

MultiLineComnentChars::
MultiLineNotAsteriskChar MultiLineCommentChgys
* PostAsteriskCommentChags

PostAsteriskCommentChars
MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentChars
* PostAsteriskCommentChags

MultiLineNotAsteriskChar:
SourceCharactebut not *

MultiLineNotForwardSlashOrAsteriskChar
SourceCharactebut not one of / or *

16

© Ecma International 2011

secma

SingleLineComment
/I SingleLineCommentChaygs

SingleLineCommentChars
SingleLineCommentChar SingleLineCommentChars

SingleLineCommentChar
SourceCharactebut not LineTerminator

7.5 Tokens

Syntax

Token::
IdentifierName
Punctuator
NumericLiteral
StringLiteral

NOTE The DivPunctuatorand RegularExpressionLitergbroductions define tokens, but are not included in the Token
production.

7.6 ldentifier Names and Identifiers

l denti fier Names are tokens that are interpreted acc:¢
chapter 5 of the Unicode standard, with some small modifications. An Identifier is an IdentifierNamethat is not

a ReservedWordsee 7.6.1). The Unicode identifier grammar is based on both normative and informative
character categories specified by the Unicode Standard. The characters in the specified categories in version

3.0 of the Unicode standard must be treated as in those categories by all conforming ECMAScript
implementations.

This standard specifies specific character additions: The dollar sign ($) and the underscore (_) are permitted
anywhere in an ldentifierName

Unicode escape sequences are also permitted in an IdentifierName where they contribute a single character to
the ldentifierName as computed by the CV of the UnicodeEscapeSequen¢see 7.8.4). The \ preceding the
UnicodeEscapeSequendees not contribute a character to the IdentifierName A UnicodeEscapeSequencannot
be used to put a character into an IdentifierNamethat would otherwise be illegal. In other words, if a
\ UnicodeEscapeSequensequence were replaced by its UnicodeEscapeSequers€V, the result must still be
a valid IdentifierNamethat has the exact same sequence of characters as the original IdentifierName All
interpretations of identifiers within this specification are based upon their actual characters regardless of
whether or not an escape sequence was used to contribute any particular characters.

Two IdentifierNamethat are canonically equivalent according to the Unicode standard are not equal unless
they are represented by the exact same sequence of code units (in other words, conforming ECMAScript
implementations are only required to do bitwise comparison on IdentifierName values). The intent is that the
incoming source text has been converted to normalised form C before it reaches the compiler.

ECMAScript implementations may recognise identifier characters defined in later editions of the Unicode
Standard. If portability is a concern, programmers should only employ identifier characters defined in Unicode
3.0.

Syntax

Identifier ::
IdentifierNamebut not ReservedWord

© Ecma International 2011 17

secma

IdentifierName: :
IdentifierStart
IdentifierName IdentifierPart

IdentifierStart::

UnicodeLetter
$

\ UnicodeEscapeSequence

IdentifierPart::
IdentifierStart
UnicodeCombiningMark
UnicodeDigit
UnicodeConnectorPunctuation
<ZWNJ>
<ZWJ>

UnicodelLetter::

any character in the Unicode categori e)so,iUppietricaacsas d el

(Lt)o, AModifier letter (Lm)o, AOther |l etter (Lo0o)O, o
UnicodeCombiningMark:

any character in the -slpnaicciondge ntaartke g(oMni)edos offrNoinCo mbi ni ng
UnicodeDigit::

any characterintheUni code category fDeci mal number (Nd)oO
UnicodeConnectorPunctuatian

any character in the Unicode category fAConnector punc’

The definitions of the nonterminal UnicodeEscapeSequenisegiven in 7.8.4

7.6.1 Reserved Words

A reserved word is an IdentifierNamethat cannot be used as an Identifier.

Syntax

ReservedWord
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

7.6.1.1 Keywords

The following tokens are ECMAScript keywords and may not be used as Identifiersin ECMAScript programs.

Synta x

Keyword:: one of
break do instanceof typeof
case else new var
catch finally return void
continue for switch while
debugger function this with
default if throw
delete in try

18 © Ecma International 2011

secma

7.6.1.2 Future Reserved Words

The following words are used as keywords in proposed extensions and are therefore reserved to allow for the
possibility of future adoption of those extensions.

Syntax

FutureReservedWord one of
class enum extends super
const export import

The following tokens are also considered to be FutureReservedWordshen they occur within strict mode code
(see 10.1.1). The occurrence of any of these tokens within strict mode code in any context where the
occurrence of a FutureReservedWondiould produce an error must also produce an equivalent error:

implements let private public yield
interface package protected static

7.7 Punctuators

Syntax
Punctuator:: one of
{ } () []
; , < > <=
>= == 1= === ==
+ - * % ++ -
<< >> >>> & | A
! ~ && Il ?
= += -= *= %= <<=
>>= >>>= &= |: N=

DivPunctuator:: one of
/ /=

7.8 Literals

Syntax

Literal ::
NullLiteral
BooleanLiteral
NumericLiteral
StringLiteral
RegularExpressionLiteral

7.8.1 Null Literals

Syntax

NullLiteral ::
null

© Ecma International 2011 19

»ecma

Semantics

The value of the null literal null is the sole value of the Null type, namely null.
7.8.2 Boolean Literals

Syntax

BooleanLiteral::
true
false

Semantics

The value of the Boolean literal true is a value of the Boolean type, namely true.

The value of the Boolean literal false is a value of the Boolean type, namely false.
7.8.3 Numeric Literals

Syntax

NumericLiteral::
DecimallLiteral
HexIntegerLiteral

DecimalLiteral::
DecimalintegerLiteral DecimalDigits,; ExponentPag
. DecimalDigits ExponentPayj;
DecimallntegerLiteral ExponentPapt

DecimalintegerLiteal ::
0

NonZeroDigit DecimalDigitg;

DecimalDigits::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit:: one of
0123456789

NonZeroDigit:: one of
123456789

ExponentPart:
Exponentindicator Signedinteger

Exponentindiator:: one of
e E

Signedinteger:
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiteral:
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

20 © Ecma International 2011

secma

HexDigit:: one of

0123456789abcdefABCDETF

The source character immediately following a NumericLiteralmust not be an IdentifierStartor DecimalDigit

NOTE For example:

3in

is an error and not the two input elements 3 and in .

Semantics

A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a
mathematical value (MV) is derived from the literal; second, this mathematical value is rounded as described
below.

=A =4 -4 =4

==

=A =4 =4 4 -4 4 -4 -4 8 4 -4 -4 -4 -8 A

The MV of NumericLiteral:: DecimalLiteralis the MV of DecimalLiteral

The MV of NumericLiteral:: HexIntegerLieral is the MV of HexIntegerLiteral

The MV of DecimalLiteral:: DecimallntegerLiteral is the MV of DecimallntegerLiteral

The MV of DecimalLiteral:: DecimalintegerLiteral. DecimalDigitsis the MV of DecimalintegerLiteralplus
(the MV of DecimalDigitstimes 10'"), where n is the number of characters in DecimalDigits.

The MV of DecimalLiteral:: DecimallntegerLiteral. ExponentParis the MV of DecimallntegerLiteraltimes
10°, where eis the MV of ExponentPart

The MV of Decimalliteral :: Decimalintegeriteral . DecimalDigits ExponentPartis (the MV of
DecimallintegerLiteralplus (the MV of DecimalDigitstimes 10") times 10°, where n is the number of
characters in DecimalDigisand e is the MV of ExponentPart

The MV of DecimalLiteral::. DecimalDigitsis the MV of DecimalDigitstimes 10", where n is the number of
characters in DecimalDigit.

The MV of DecimalLiteral::. DecimalDigits ExponentPais the MV of DecimalDigitstimes 10°", where n is
the number of characters in DecimalDigis and eis the MV of ExponentPart

The MV of DecimalLiteral:: DecimallntegerLiterals the MV of DecimalintegerLiteral

The MV of DecimalLiteral:: DecimallntegerLiteral ExponentPaig the MV of DecimallntegerLiteratimes 10°,
where eis the MV of ExponentPart

The MV of DecimalintegerLiterat: 0 is 0.
The MV of DecimallntegerLiterat: NonZeroDigitis the MV of NonZeroDigit

The MV of DecimalintegerLiteral: NonZeroDigitDecimalDigitsis (the MV of NonZeroDigittimes 10" plus
the MV of DecimalDigits where n is the number of characters in DecimalDigits

The MV of DecimalDigits:: DecimalDigitis the MV of DecimalDigit

The MV of DecimalDigits:: DecimalDigitsDecimalDigitis (the MV of DecimalDigitstimes 10) plus the MV of
DecimalDigit

The MV of ExponentPart: Expmentindicator Signedintegés the MV of Signedinteger
The MV of Signedinteger: DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger: + DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger: - DecimalDigitsis the negative of the MV of DecimalDigits
The MV of DecimalDigit:: 0 or of HexDigit:: 0 is 0.

The MV of DecimalDigit:: 1 or of NonZeroDigit:: 1 or of HexDigit:: 1 is 1.

The MV of DecimalDigit:: 2 or of NonZeroDigit:: 2 or of HexDigit:: 2 is 2.

The MV of DecimalDgit :: 3 or of NonZeroDigit:: 3 or of HexDigit:: 3 is 3.

The MV of DecimalDigit:: 4 or of NonZeroDigit:: 4 or of HexDigit:: 4 is 4.

The MV of DecimalDigit:: 5 or of NonZeroDigit:: 5 or of HexDigit:: 5 is 5.

The MV of DecimalDigit:: 6 or of NonZerdigit :: 6 or of HexDigit:: 6 is 6.

The MV of DecimalDigit:: 7 or of NonZeroDigit:: 7 or of HexDigit:: 7 is 7.

The MV of DecimalDigit:: 8 or of NonZeroDigit:: 8 or of HexDigit:: 8 is 8.

The MV of DecimalDigit:: 9 or of NonZeroDigit:: 9 or of HexDigit :: 9 is 9.

The MV of HexDigit:: a or of HexDigit:: Ais 10.

© Ecma International 2011 21

secma

The MV of HexDigit:: b or of HexDigit:: Bis 11.
The MV of HexDigit:: ¢ or of HexDigit:: Cis 12.
The MV of HexDigit:: d or of HexDigit:: Dis 13.
The MV of HexDigit:: e or of HexDigit :: Eis 14.
The MV of HexDigit:: f or of HexDigit:: Fis 15.
The MV of HexIntegerLiteral: Ox HexDigitis the MV of HexDigit.
The MV of HexlIntegerLiteral: 0X HexDigitis the MV of HexDigit

The MV of HexIntegerLiteral:: HexIntegerLiteraHexDigitis (the MV of HexIntegerLiterattimes 16) plus the
MV of HexDigit

=4 =4 =4 -4 -8 —a -2 -9

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the Number type.
If the MV is 0, then the rounded value is +0; otherwise, the rounded value must be the Number value for the
MV (as specified in 8.5), unless the literal is a DecimalLiteraland the literal has more than 20 significant digits,
in which case the Number value may be either the Number value for the MV of a literal produced by replacing
each significant digit after the 20th with a 0 digit or the Number value for the MV of a literal produced by
replacing each significant digit after the 20th with a 0 digit and then incrementing the literal at the 20th
significant digit position. A digit is significant if it is not part of an ExponentPar&and

1 itisnotO; or
1 there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPartto its right.

A conforming implementation, when processing strict mode code (see 10.1.1), must not extend the syntax of
NumericLiteralto include OctalintegerLiteralas described in B.1.1.

7.8.4 String Literals

A string literal is zero or more characters enclosed in single or double quotes. Each character may be
represented by an escape sequence. All characters may appear literally in a string literal except for the closing
quote character, backslash, carriage return, line separator, paragraph separator, and line feed. Any character
may appear in the form of an escape sequence.

Syntax

StringLiteral::
" DoubleStringCharactegs; "
' SingleStringCharactegs '

DoubleStringCharacters
DoubleStringCharacter DoubleStringCharactgys

SingleStringCharacters
SingleStringCharacter SingleStringCharactgrs

DoubleStringCharacter:
SourceCharactebut not one of " or \ or LineTerminator
\ EscapeSequence
LineContinuation

SingleStringCharacter.
SourceCharactebut not one of ' or\ or LineTerminator
\ EscapeSequence
LineContinuation

LineContinuatior:
\ LineTerminatorSequence

22 © Ecma International 2011

secma

EscapeSequence

CharacteEscapeSequence
O [lookahead T DecimalDigif
HexEscapeSequence
UnicodeEscapeSequence

CharacterEscapeSequence

SingleEscapeCharacter
NonEscapeCharacter

SingleEscapeCharacter one of

\' bfnrtyv

NonEscapeCharacter

SourceCharactebut not one of EscapeCharacteor LineTerminator

EscapeCharacter.

SingleEscapeCharacter
DecimalDigit

X

u

HexEscapeSequence

x HexDigit HexDigit

UnicodeEscapeSequence

u HexDigit HexDigit HexDigit HexDigit

The definition of the nonterminal HexDigitis given in 7.8.3. SourceCharacteis defined in clause 6.

Semantics

A string literal stands for a value of the String type. The String value (SV) of the literal is described in terms of
character values (CV) contributed by the various parts of the string literal. As part of this process, some
characters within the string literal are interpreted as having a mathematical value (MV), as described below or

in 7.8.3.

1 The SV of StringLiteral:: ™ is the empty character sequence.

1 The SV of StringLiteral:: " is the empty character sequence.

1 The SV of StringLiteral:: " DoubleStringCharacters is the SV of DoubleStringCharacters

1 The SV of StringLiteral:: ' SingleStringCharacters is the SV of SingleStringCharacters

1 The SV of DoubleStringCharacters: DoubleStringClracter is a sequence of one character, the CV of
DoubleStringCharacter

1 The SV of DoubleStringCharacters DoubleStringCharacteDoubleStringCharacteris a sequence of the CV
of DoubleStringCharactefollowed by all the characters in the SV of DoubleStmgCharacterdn order.

1 The SV of SingleStringCharacters: SingleStringCharacteis a sequence of one character, the CV of
SingleStringCharacter

1 The SV of SingleStringCharacters SingleStringCharacteBingleStringCharacters is a sequence of the CV
of SingleStringCharactefollowed by all the characters in the SV of SingleStringCharacteris order.

1 The SV of LineContinuatiort: \ LineTerminatorSequende the empty character sequence.

1 The CV of DoubleStringCharacter.: SourceCharactebut not one of " or \ or LineTerminatoris the
SourceCharactecharacter itself.

1 The CV of DoubleStringCharacter: \ EscapeSequenégthe CV of the EscapeSequence

1 The CV of DoubleStringCharacter: LineContinuatioris the empty character sequence.

1 The CV of SingleStringChracter :: SourceCharactebut not one of ' or \ or LineTerminatoris the
SourceCharactecharacter itself.

1 The CV of SingleStringCharacter. \ EscapeSequendégthe CV of the EscapeSequence

© Ecma International 2011 23

secma

The CV of SingleStringCharacter. LineContinuatioris the empty character sequence.

The CV of EscapeSequenceCharacterEscapeSequeniseghe CV of the CharacterEscapeSequence
The CV of EscapeSequence0 [lookahead T DecimalDigif is a <NUL> character (Unicode value 0000).
The CV of EscapeSequenceHexEscape3piencds the CV of the HexEscapeSequence

The CV of EscapeSequenceUnicodeEscapeSequenisghe CV of the UnicodeEscapeSequence

The CV of CharacterEscapeSequenceSingleEscapeCharactas the character whose code unit value is
determined by the SingleEscapeCharacteaccording to Table 4:

=A =4 =48 —a —a -8

Table 4 8 String Single Character Escape Sequences

Escape Sequence Code Unit Value Name Symbol

\b \ u0008 backspace <BS>
\t \ u0009 horizontal tab <HT>
\n \ uOOOA line feed (new line) <LF>
\v \ uo00B vertical tab <VT>
\ f \ uoooC form feed <FF>
\r \ u0d00D carriage return <CR>
\ " \ u0022 double quote !

\! \ u0027 single quote '

\\ \ u005C backslash \

1 The CV of CharacterEscapeSequenceNonEscapeCharactas the CV of the NonEscapeCharacter

i The CV of NonEscapeCharder :: SourceCharactebut not one of EscapeCharacteor LineTerminatoris the
SourceCharactecharacter itself.

1 The CV of HexEscapeSequencex HexDigit HexDigit is the character whose code unit value is (16 times
the MV of the first HexDigit) plus the MV of the second HexDigit

1 The CV of UnicodeEscapeSequenceu HexDigit HexDigit HexDigit HexDigit is the character whose code
unit value is (4096times the MV of the first HexDigit) plus (256 times the MV of the second HexDigit) plus
(16 times the MV of the third HexDigit) plus the MV of the fourth HexDigit

A conforming implementation, when processing strict mode code (see 10.1.1), may not extend the syntax of
EscapeSequende include OctalEscapeSequeneas described in B.1.2.

NOTE A line terminator character cannot appear in a string literal, except as part of a LineContinuationto produce the
empty character sequence. The correct way to cause a line terminator character to be part of the String value of a string
literal is to use an escape sequence such as \ n or \ uO0OOA.

7.8.5 Regular Expression Literals

A regular expression literal is an input element that is converted to a RegExp object (see 15.10) each time the
literal is evaluated. Two regular expression literals in a program evaluate to regular expression objects that
never compare as === to each other even if the two literals' contents are identical. A RegExp object may also
be created at runtime by new RegExp (see 15.10.4) or calling the RegExp constructor as a function (15.10.3).

The productions below describe the syntax for a regular expression literal and are used by the input element
scanner to find the end of the regular expression literal. The Strings of characters comprising the
RegularExpressionBodgnd the RegularExpressionFlagare passed uninterpreted to the regular expression
constructor, which interprets them according to its own, more stringent grammar. An implementation may
extend the regular expression constructor's grammar, but it must not extend the RegularExpressionBodsnd
RegularEpressionFlaggroductions or the productions used by these productions.

24 © Ecma International 2011

secma

Syntax

RegularExpressionLiteral
/ RegularExpressionBody RegularExpressionFlags

RegularExpressionBody
RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars
[empty] . .
RegularExpressionChars RegularExpressionChar

RegularExpressionFirstChar
RegularExpressionNonTerminatbut not one of * or\ or/ or [
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionChar
RegularExpressionNonTernator but not one of \ or/ or [
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionBackslashSequence
\ RegularExpressionNonTerminator

RegularExpressionNonTerminator
SourceCharactebut not LineTerminator

RegularExpressionClas:
[RegularExpressionClassChais

RegularExpressionClassChars
[empty] . .
RegularExpressionClassChamRegularExpressionClassChar

RegularExpressionClassChar.
RegularExpressionNonTerminatout not one of] or\
RegularExpressionBackslashSequence

RegulaExpressionFlags:
[empty] . -~
RegularExpressionFlags IdentifierPart

NOTE Regular expression literals may not be empty; instead of representing an empty regular expression literal, the
characters // start a single-line comment. To specify an empty regular expression, use: /(?:)/

Semantics

A regular expression literal evaluates to a value of the Object type that is an instance of the standard built-in
constructor RegExp. This value is determined in two steps: first, the characters comprising the regular
expression's RegularExpressionBodyand RegularExpressionFlagsproduction expansions are collected
uninterpreted into two Strings Pattern and Flags, respectively. Then each time the literal is evaluated, a new
object is created as if by the expression new RegExp(Pattern, Flags) where RegExp is the standard
built-in constructor with that name. The newly constructed object becomes the value of the
RegularExpressionLiteralf the call to new RegExp would generate an error as specified in 15.10.4.1, the error
must be treated as an early error (Clause 16).

© Ecma International 2011 25

secma

7.9 Automatic Semicolon Insertion

Certain ECMAScript statements (empty statement, variable statement, expression statement, do-while
statement, continue statement, break statement, return statement, and throw statement) must be
terminated with semicolons. Such semicolons may always appear explicitly in the source text. For
convenience, however, such semicolons may be omitted from the source text in certain situations. These
situations are described by saying that semicolons are automatically inserted into the source code token
stream in those situations.

7.9.1 Rules of Automatic Semicolon Insertion
There are three basic rules of semicolon insertion:

1. When, as the program is parsed from left to right, a token (called the offending token) is encountered that
is not allowed by any production of the grammar, then a semicolon is automatically inserted before the
offending token if one or more of the following conditions is true:

1 The offending token is separated from the previous token by at least one LineTerminator
1 The offending token is } .

2. When, as the program is parsed from left to right, the end of the input stream of tokens is encountered
and the parser is unable to parse the input token stream as a single complete ECMAScript Program then
a semicolon is automatically inserted at the end of the input stream.

3. When, as the program is parsed from left to right, a token is encountered that is allowed by some
production of the grammar, but the production is a restricted production and the token would be the first
token for a terminal or nonterminal immediately following the annotation fino LineTerminatomere]0 within the
restricted production (and therefore such a token is called a restricted token), and the restricted token is
separated from the previous token by at least one LineTerminator then a semicolon is automatically
inserted before the restricted token.

However, there is an additional overriding condition on the preceding rules: a semicolon is never inserted
automatically if the semicolon would then be parsed as an empty statement or if that semicolon would become
one of the two semicolons in the header of a for statement (see 12.6.3).

NOTE The following are the only restricted productions in the grammar:

PostfixExpressn :
LeftHandSideExpressiofno LineTerminatorhere] ++
LeftHandSideExpressiofmno LineTerminatorhere] --

ContinueStatement
continue [no LineTerminatorhere] ldentifier;

BreakStatement
break [no LineTerminatorhere] ldentifier ;

ReturnStatement
re turn [no LineTerminatothere] EXxpression

ThrowStatement
throw [no LineTerminatorhere] Expression

The practical effect of these restricted productions is as follows:
When a ++ or -- token is encountered where the parser would treat it as a postfix operator, and at least one

LineTerminatoroccurred between the preceding token and the ++ or -- token, then a semicolon is automatically
inserted before the ++ or -- token.

26 © Ecma International 2011

dmr

When a continue , break , return , or throw token is encountered and a LineTerminatoris encountered before
the next token, a semicolon is automatically inserted after the continue , break , return , or throw token.

The resulting practical advice to ECMAScript programmers is:

A postfix ++ or -- operator should appear on the same line as its operand.
An Expressiorin areturn or throw statement should start on the same line as the return or throw token.

An Identifierin a break or continue statement should be on the same line as the break or continue token.

7.9.2 Examples of Automatic Semicolon Insertion

The source

{1213
is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules. In
contrast, the source

{1

2}3

is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the
following:

{1

2313,
which is a valid ECMAScript sentence.

The source

for (a; b

)
is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the
semicolon is needed for the header of a for statement. Automatic semicolon insertion never inserts one of
the two semicolons in the header of a for statement.

The source
return
a+b
is transformed by automatic semicolon insertion into the following:
return;
a+b;
NOTE The expression a + b is not treated as a value to be returned by the return statement, because a

LineTerminatorseparates it from the token return

The source
a=b
++C

is transformed by automatic semicolon insertion into the following:
a=b;
++C;

1

NOTE The token ++ is not treated as a postfix operator applying to the variable b, because a LineTerminatoroccurs
between b and ++.

The source

if (@ > b)
elsec=d

© Ecma International 2011 27

secma

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion before the else token,
even though no production of the grammar applies at that point, because an automatically inserted semicolon
would then be parsed as an empty statement.

The source

a=b+c

(d + e).print()
is not transformed by automatic semicolon insertion, because the parenthesised expression that begins the
second line can be interpreted as an argument list for a function call:

a=Db+c(d+ e).print()

In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea for the
programmer to provide an explicit semicolon at the end of the preceding statement rather than to rely on
automatic semicolon insertion.

8 Types

Algorithms within this specification manipulate values each of which has an associated type. The possible
value types are exactly those defined in this clause. Types are further subclassified into ECMAScript language
types and specification types.

An ECMAScript language type corresponds to values that are directly manipulated by an ECMAScript
programmer using the ECMAScript language. The ECMAScript language types are Undefined, Null, Boolean,
String, Number, and Obiject.

A specification type corresponds to meta-values that are used within algorithms to describe the semantics of
ECMAScript language constructs and ECMAScript language types. The specification types are Reference,
List, Completion, Property Descriptor, Property Identifier, Lexical Environment, and Environment Record.
Specification type values are specification artefacts that do not necessarily correspond to any specific entity
within an ECMAScript implementation. Specification type values may be used to describe intermediate results
of ECMAScript expression evaluation but such values cannot be stored as properties of objects or values of
ECMAScript language variables.

Within this specification,then ot a fTypedd fi s used as thestipeokd h wh &pe® oriie fler s t o t
ECMAScript language and specification types defined in this clause.

8.1 The Undefined Type

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a value
has the value undefined.

8.2 The Null Type

The Null type has exactly one value, called null.

8.3 The Boolean Type

The Boolean type represents a logical entity having two values, called true and false.

8.4 The String Type

The String type is the set of all finite ordered sequences of zero or more 16-bit unsigned integer values
(fiel ementso). The String type is generally used to repre
which case each element in the String is treated as a code unit value (see Clause 6). Each element is
regarded as occupying a position within the sequence. These positions are indexed with nonnegative integers.
The first element (if any) is at position 0, the next element (if any) at position 1, and so on. The length of a

28 © Ecma International 2011

secma

String is the number of elements (i.e., 16-bit values) within it. The empty String has length zero and therefore
contains no elements.

When a String contains actual textual data, each element is considered to be a single UTF-16 code unit.
Whether or not this is the actual storage format of a String, the characters within a String are numbered by
their initial code unit element position as though they were represented using UTF-16. All operations on
Strings (except as otherwise stated) treat them as sequences of undifferentiated 16-bit unsigned integers;
they do not ensure the resulting String is in normalised form, nor do they ensure language-sensitive results.

NOTE The rationale behind this design was to keep the implementation of Strings as simple and high-performing as
possible. The intent is that textual data coming into the execution environment from outside (e.g., user input, text read
from a file or received over the network, etc.) be converted to Unicode Normalised Form C before the running program
sees it. Usually this would occur at the same time incoming text is converted from its original character encoding to
Unicode (and would impose no additional overhead). Since it is recommended that ECMAScript source code be in
Normalised Form C, string literals are guaranteed to be normalised (if source text is guaranteed to be normalised), as long
as they do not contain any Unicode escape sequences.

8.5 The Number Type

The Number type has exactly 1843773687445481062(that is, 2°- 2°*+3) values, representing the double-
precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point Arithmetic,
except that the 900719925474099(that is, 2°°- 2) di st taNautmb@Not val ues of t he
represented in ECMAScript as a single special NaN value. (Note that the NaN value is produced by the
program expression NaN) In some implementations, external code might be able to detect a difference
between various Not-a-Number values, but such behaviour is implementation-dependent; to ECMAScript code,

all NaN values are indistinguishable from each other.

There are two other special values, called positive Infinity and negative Infinity. For brevity, these values
are also referred to for expository purposes by the symbols +o and - &, respectively. (Note that these two
infinite Number values are produced by the program expressions +Infinity (or simply Infinity) and -
Infinity J)

The other 1843773687445481062¢hat is, 2°* 2°% values are called the finite numbers. Half of these are
positive numbers and half are negative numbers; for every finite positive Number value there is a
corresponding negative value having the same magnitude.

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to for
expository purposes by the symbols +0 and -0, respectively. (Note that these two different zero Number
values are produced by the program expressions +0 (or simply 0) and - 0.)

The 1843773687445481062hat is, 2°*- 2°°- 2) finite nonzero values are of two kinds:
1842872967520006963¢hat is, 2°* 2°% of them are normalised, having the form

s3 ms 2°

where sis +1 or - 1, mis a positive integer less than 2°° but not less than 2°% and e is an integer ranging from
- 1074to 971, inclusive.

The remaining 900719925474099(hat is, 2°* 2) values are denormalised, having the form

s3 ms3 2°

where sis +1 or - 1, mis a positive integer less than 2°% and eis - 1074

Note that all the positive and negative integers whose magnitude is no greater than 2°° are representable in
the Number type (indeed, the integer 0 has two representations, +0 and - 0).

© Ecma International 2011 29

secma

A finite number has an odd significand if it is nonzero and the integer m used to express it (in one of the two
forms shown above) is odd. Otherwise, it has an even significand.

I n this speci f i ctletNurmber,valug foexd p tvh m sepresefits an exact nonzero real
mathematical quantity (which might even be an irrational number such as p) means a Number value chosen in
the following manner. Consider the set of all finite values of the Number type, with - 0 removed and with two
additional values added to it that are not representable in the Number type, namely 2'%%* (which is +13 2°33
2°Y and - 2'%%* (which is -1 3 223 2% Choose the member of this set that is closest in value to x. If two
values of the set are equally close, then the one with an even significand is chosen; for this purpose, the two
extra values 2'%%*and - 2!'°?* are considered to have even significands. Finally, if 2!°** was chosen, replace it
with +a; if - 2% was chosen, replace it with - & ; if +0 was chosen, replace it with - 0 if and only if x is less than
zero; any other chosen value is used unchanged. The result is the Number value for x. (This procedure
corresponds exactly to the behaviour of the | EEE

Some ECMAScript operators deal only with integers in the range - 2** through 2°-- 1, inclusive, or in the range
0 through 2°% 1, inclusive. These operators accept any value of the Number type but first convert each such

value to one of 2°? integer values. See the descriptions of the Tolnt32 and ToUint32 operators in 9.5 and 9.6,
respectively.

8.6 The Object Type

An Obiject is a collection of properties. Each property is either a named data property, a hamed accessor
property, or an internal property:

1 A named data property associates a name with an ECMAScript language value and a set of Boolean
attributes.

1 A named accessor property associates a name with one or two accessor functions, and a set of Boolean
attributes. The accessor functions are used to store or retrieve an ECMAScript language value that is
associated with the property.

1 An internal property has no name and is not directly accessible via ECMAScript language operators.
Internal properties exist purely for specification purposes.

There are two kinds of access for named (non-internal) properties: get and put, corresponding to retrieval and
assignment, respectively.

8.6.1 Property Attributes

Attributes are used in this specification to define and explain the state of nhamed properties. A named data
property associates a name with the attributes listed in Table 5

Table 508 Attributes of a Named Data Property

Attribute Name Value Domain Description
[[Value]] Any ECMAScript The value retrieved by reading the property.
language type
[[Writable]] Boolean If false, attempts by ECMAScript code to change the
p r o p e[pValuelpatribute using [[Put]] will not succeed.
[[Enumerable]] Boolean If true, the property will be enumerated by a for-in

enumeration (see 12.6.4). Otherwise, the property is said
to be non-enumerable.

[[Configurable]] | Boolean If false, attempts to delete the property, change the
property to be an accessor property, or change its
attributes (other than [[Value]]) will fail.

A named accessor property associates a name with the attributes listed in Table 6.

30 © Ecma International 2011

secmd

Table 6 0 Attributes of a Named Accessor Property

Attribute Name Value Domain Description
[[Get]] Object or If the value is an Object it must be a function Object. The
Undefined functondbs [[Cal I]] i n tiecalladawithame t
empty arguments list to return the property value each time
a get access of the property is performed.
[[Set]] Object or If the value is an Object it must be a function Object. The
Undefined functondbs [[Cal I]] i n tiecalladawithame t

arguments list containing the assigned value as its sole
argument each time a set access of the property is
performed. The effect of a property's [[Set]] internal method
may, but is not required to, have an effect on the value
returned by subsequent calls to the property's [[Get]]
internal method.

[[Enumerable]] Boolean If true, the property is to be enumerated by a for-in
enumeration (see 12.6.4). Otherwise, the property is said to
be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the

property to be a data property, or change its attributes will
fail.

If the value of an attribute is not explicitly specified by this specification for a named property, the default value
defined in Table 7 is used.

Table 7 8 Default Attribute Values

Attribute Name Default Value
[[Value]] undefined
[[Get]] undefined
[[Set]] undefined
[[Writable]] false
[[Enumerable]] false
[[Configurable]] false

8.6.2 Object Internal Properties and Methods

This specification uses various internal properties to define the semantics of object values. These internal
properties are not part of the ECMAScript language. They are defined by this specification purely for
expository purposes. An implementation of ECMAScript must behave as if it produced and operated upon
internal properties in the manner described here. The names of internal properties are enclosed in double
square brackets [[]J]. When an algorithm uses an internal property of an object and the object does not
implement the indicated internal property, a TypeError exception is thrown.

The Table 8 summarises the internal properties used by this specification that are applicable to all
ECMAScript objects. The Table 9 summarises the internal properties used by this specification that are only
applicable to some ECMAScript objects. The descriptions in these tables indicate their behaviour for native
ECMAScript objects, unless stated otherwise in this document for particular kinds of native ECMAScript
objects. Host objects may support these internal properties with any implementation-dependent behaviour as
long as it is consistent with the specific host object restrictions stated in this document.

The fVdlywe Domaind columns of the following tables d
properties. The type names refer to the types defined in Clause 8 augmented by the following additional
nameanyd imeans the value mayn duwa gaen pripfp@ARe anpt Uhdlef i n
Bool ean, Stri rBpecOpdr m&Namb et he fii nt einterrl methad,cap implegmgntaiioa a n
provided procedure defined by an abstract opeesaidgtveon s
parameter names. If a parameter name is the same as a type name then the name describes the type of the

© Ecma International 2011 31

parameter. | f a #fSpispabameéter liseid followedby the synabbl dYedand the type of the

returned value.

Table 8 6 Internal Properties Common to All Objects

Internal Property Value Type Domain Description
[[Prototypel]] Object or Null The prototype of this object.
[[Class]] String A String value indicating a specification defined
classification of objects.
[[Extensible]] Boolean If true, own properties may be added to the
object.
[[Get]] SpecOp(propertyName) Y Returns the value of the named property.
any
[[GetOwnProperty]] SpecOp (propertyName) Y | Returns the Property Descriptor of the named
Undefined or Property own property of this object, or undefined if
Descriptor absent.
[[GetProperty]] SpecOp (propertyName) Y | Returns the fully populated Property Descriptor
Undefined or Property of the named property of this object, or
Descriptor undefined if absent.
[[Put]] SpecOp (propertyName, Sets the specified named property to the value
any, Boolean) of the second parameter. The flag controls
failure handling.
[[CanPut]] SpecOp (propertyName) Y | Returns a Boolean value indicating whether a
Boolean [[Put]] operation with PropertyName can be
performed.
[[HasProperty]] SpecOp (propertyName) Y | Returns a Boolean value indicating whether the
Boolean object already has a property with the given
name.
[[Delete]] SpecOp (propertyName, Removes the specified named own property
Boolean) Y Boolean from the object. The flag controls failure
handling.
[[DefaultValue]] SpecOp (Hint) Y primitive Hint is a String. Returns a default value for the
object.
[[DefineOwnProperty]] | SpecOp (propertyName, Creates or alters the named own property to
PropertyDescriptor, have the state described by a Property
Boolean) Y Boolean Descriptor. The flag controls failure handling.

Every object (including host objects) must implement all of the internal properties listed in Table 8. However,
the [[DefaultValue]] internal method may, for some objects, simply throw a TypeError exception.

All objects have an internal property called [[Prototype]]. The value of this property is either null or an object
and is used for implementing inheritance. Whether or not a native object can have a host object as its
[[Prototype]] depends on the implementation. Every [[Prototype]] chain must have finite length (that is, starting
from any object, recursively accessing the [[Prototype]] internal property must eventually lead to a null value).
Named data properties of the [[Prototype]] object are inherited (are visible as properties of the child object) for
the purposes of get access, but not for put access. Named accessor properties are inherited for both get
access and put access.

Every ECMAScript object has a Boolean-valued [[Extensible]] internal property that controls whether or not
named properties may be added to the object. If the value of the [[Extensible]] internal property is false then
additional named properties may not be added to the object. In addition, if [[Extensible]] is false the value of
the [[Class]] and [[Prototype]] internal properties of the object may not be modified. Once the value of an
[[Extensible]] internal property has been set to false it may not be subsequently changed to true.

NOTE This specification defines no ECMAScript language operators or built-in functions that permit a program to
modi fy an objectds [[Cl as s Je}ormchargd tRervalue oft[[fxpersiblé]] fronm falsertantiué.
Implementation specific extensions that modify [[Class]], [[Prototype]] or [[Extensible]] must not violate the invariants
defined in the preceding paragraph.

32 © Ecma International 2011

proper:t

secma

The value of the [[Class]] internal property is defined by this specification for every kind of built-in object. The
value of the [[Class]] internal property of a host object may be any String value except one of "Arguments"
"Array" , "Boolean" , "Date" , "Error" , "Function" , "JSON", "Math" , "Number" , "Object" |,
"RegExp" , and "String" . The value of a [[Class]] internal property is used internally to distinguish different
kinds of objects. Note that this specification does not provide any means for a program to access that value
except through Object.prototype.toString (see 15.2.4.2).

Unless otherwise specified, the common internal methods of native ECMAScript objects behave as described
in 8.12. Array objects have a slightly different implementation of the [[DefineOwnProperty]] internal method
(see 15.4.5.1) and String objects have a slightly different implementation of the [[GetOwnProperty]] internal
method (see 15.5.5.2). Arguments objects (10.6) have different implementations of [[Get]], [[GetOwnProperty]],
[[DefineOwnProperty]], and [[Delete]]. Function objects (15.3) have a different implementation of [[Get]].

Host objects may implement these internal methods in any manner unless specified otherwise; for example,
one possibility is that [[Get]] and [[Put]] for a particular host object indeed fetch and store property values but
[[HasProperty]] always generates false. However, if any specified manipulation of a host object's internal
properties is not supported by an implementation, that manipulation must throw a TypeError exception when
attempted.

The [[GetOwnProperty]] internal method of a host object must conform to the following invariants for each
property of the host object:

1 If a property is described as a data property and it may return different values over time, then either or
both of the [[Writable]] and [[Configurable]] attributes must be true even if no mechanism to change the
value is exposed via the other internal methods.

9 If a property is described as a data property and its [[Writable]] and [[Configurable]] are both false, then
the SameValue (according to 9.12) must be returned for the [[Value]] attribute of the property on all calls
to [[GetOwnProperty]].

1 If the attributes other than [[Writable]] may change over time or if the property might disappear, then the
[[Configurable]] attribute must be true.

1 If the [[Writable]] attribute may change from false to true, then the [[Configurable]] attribute must be true.

T If the value of the host objectds [[Extensible]] i
be false, then if a call to [[GetOwnProperty]] describes a property as non-existent all subsequent calls
must also describe that property as non-existent.

The [[DefineOwnProperty]] internal method of a host object must not permit the addition of a new property to a
host object if the [[Extensible]] internal property of that host object has been observed by ECMAScript code to
be false.

If the [[Extensible]] internal property of that host object has been observed by ECMAScript code to be false
then it must not subsequently become true.

© Ecma International 2011 33

PPN
[V

eCmd

4

Table 98 Internal Properties Only Defined for Some Objects

Internal Property Value Type Description
Domain
[[PrimitiveValue]] primitive Internal state information associated with this object. Of the

standard built-in ECMAScript objects, only Boolean, Date,
Number, and String objects implement [[PrimitiveValue]].

[[Construct]]

SpecOp(a List of
any) Y Object

Creates an object. Invoked via the new operator. The
arguments to the SpecOp are the arguments passed to the
new operator. Objects that implement this internal method
are called constructors.

([Call]]

SpecOp(any, a List
of any) Y any or
Reference

Executes code associated with the object. Invoked via a
function call expression. The arguments to the SpecOp are
this object and a list containing the arguments passed to the
function call expression. Objects that implement this internal
method are callable. Only callable objects that are host
objects may return Reference values.

[[HaslInstance]]

SpecOp(any) Y
Boolean

Returns a Boolean value indicating whether the argument is
likely an Object that was constructed by this object. Of the
standard built-in ECMAScript objects, only Function objects
implement [[HasInstance]].

[[Scope]]

Lexical Environment

A lexical environment that defines the environment in which
a Function object is executed. Of the standard built-in
ECMAScript objects, only Function objects implement
[[Scope]].

[[FormalParameters]]

List of Strings

A possibly empty List containing the identifier Strings of a
Funct iFormaParaméeerList Of the standard built-in
ECMAScript objects, only Function objects implement
[[FormalParameterList]].

[[Code]]

ECMAScript code

The ECMAScript code of a function. Of the standard built-in
ECMAScript objects, only Function objects implement
[[Code]].

[[TargetFunction]]

Object

The target function of a function object created using the
standard built-in Function.prototype.bind method. Only
ECMAScript objects created using Function.prototype.bind
have a [[TargetFunction]] internal property.

[[BoundThis]]

any

The pre-bound this value of a function Object created using
the standard built-in Function.prototype.bind method. Only
ECMAScript objects created using Function.prototype.bind
have a [[BoundThis]] internal property.

[[BoundArguments]]

List of any

The pre-bound argument values of a function Object created
using the standard built-in Function.prototype.bind method.
Only ECMAScript objects created using
Function.prototype.bind have a [[BoundArguments]] internal

property.

[[Match]]

SpecOp(String,
index) Y
MatchResult

Tests for a regular expression match and returns a
MatchResult value (see 15.10.2.1). Of the standard built-in
ECMAScript objects, only RegExp objects implement
[[Match]].

[[ParameterMap]]

Object

Provides a mapping between the properties of an arguments
object (see 10.6) and the formal parameters of the
associated function. Only ECMAScript objects that are
arguments objects have a [[ParameterMap]] internal

property.

34

© Ecma International 2011

secma

8.7 The Reference Specification Type

The Reference type is used to explain the behaviour of such operators as delete , typeof , and the
assignment operators. For example, the left-hand operand of an assignment is expected to produce a
reference. The behaviour of assignment could, instead, be explained entirely in terms of a case analysis on
the syntactic form of the left-hand operand of an assignment operator, but for one difficulty: function calls are
permitted to return references. This possibility is admitted purely for the sake of host objects. No built-in
ECMAScript function defined by this specification returns a reference and there is no provision for a user-
defined function to return a reference. (Another reason not to use a syntactic case analysis is that it would be
lengthy and awkward, affecting many parts of the specification.)

A Reference is a resolved name binding. A Reference consists of three components, the basevalue, the
referenced namand the Boolean valued strict referencelag. The base value is either undefined, an Object, a
Boolean, a String, a Number, or an environment record (10.2.1). A base value of undefined indicates that the
reference could not be resolved to a binding. The referenced name is a String.

The following abstract operations are used in this specification to access the components of references:

GetBase(V). Returns the base value component of the reference V.
GetReferencedName(V). Returns the referenced name component of the reference V.
IsStrictReference(V). Returns the strict reference component of the reference V.
HasPrimitiveBase(V). Returns true if the base value is a Boolean, String, or Number.

IsPropertyReference(V). Returns true if either the base value is an object or HasPrimitiveBase(V) is true;
otherwise returns false.

1 IsUnresolvableReference(V). Returns true if the base value is undefined and false otherwise.

=A =4 -4 -4 A

The following abstract operations are used in this specification to operate on references:

8.7.1 GetValue (V)

If Type(V) is not Reference, retuv.
Let basebe the result of calling GetBasé(
If IsUnresolvableReferenc¥®], throw aReferenceError exception.
If IsPropertyReferenc#f), then
a. If HasPrimitiveBaseX) is false, then letgetbe the [[Get]] internal method dfase otherwise leget
be the special [[Get]] internal method defined below.
b. Return the result of calling thgetinternal method usinbaseas itsthis value andpassing
GetReferencedNamej for the argument.
5. Else,basemust be an environment record.
a. Return the result of calling the GetBindingValue (see 10.2.1) concrete methadedassing
GetReferencedNan(¥) and IsStrictReferenc¥f as arguments.

PoONPE

The following [[Get]] internal method is used by GetValue when V is a property reference with a primitive base
value. It is called using baseas its this value and with property P as its argument. The following steps are
taken:

1. LetO be ToObjectihasq.

2. Letdescbe the result of calling the [[GetProperty]] internal methodokith property namé>.

3. |If descis undefined, returnundefined.

4. |If IsDataDescriptordesq is true, returndesc[[Value]].

5. Otherwise, IsAccessbrescriptorflesg must betrue so, letgetterbe desc[[Get]] (see 8.10).

6. If getteris undefined, returnundefined.

7. Return the result calling the [[Call]] internal methodg#tterproviding baseas thethis value and providing
no arguments.

NOTE The object that may be created in step 1 is not accessible outside of the above method. An implementation

might choose to avoid the actual creation of the object. The only situation where such an actual property access that uses
this internal method can have visible effect is when it invokes an accessor function.

© Ecma International 2011 35

secma

8.7.2 PutValue (V, W)

1. If Type(V) is not Reference, throwReferenceError exception.
2. Letbasebe the result of calling GetBadé(
3. If IsUnresolvableReferenc¥], then
a. |If IsStrictReferenceY) istrue, then
i Throw ReferenceError exception.
b. Call the [[Put]] internal method of the global object, passing GetReferencedNamoe (the
property nameW for the value, andalse for the Throwflag.
4. Else if IsPropertyReferencd), then
a. If HasPrimitiveBaseY) is false, then letputbe the [[Put]] internal method dfase otherwise leput
be the special [[Put]] internal method defined below.
b. Call theputinternalmethod usingaseas itsthis valug, andpassing GetReferencedNagfor the
property nameW for the value, ad IsStrictReferenc&() for the Throw flag.
5. Elsebasemust be a reference whose base is an environment record. So,
a. Call the SetMutableBinding (10.2.1) concrete methotbade passing GetReferencedNanag (W,
and IsStrictReferenc¥] as arguments.
6. Return.

The following [[Put]] internal method is used by PutValue when V is a property reference with a primitive base
value. It is called using baseas its this value and with property P, value W, and Boolean flag Throw as
arguments. The following steps are taken:

1. LetObe ToObjectipasg.
2. |If the result of calling the [[CanPut]] internal method®fwith argumentP is false, then
a. If Throwis true, then throw alypeError exception.
b. Else return.
3. LetownDesdbe the result of calling the [[GetOwnProperty]] internal hoet of O with argumentP.
4. |If IsDataDescriptordwnDes¢ is true, then
a. If Throwis true, then throw alypeError exception.
b. Else return.
5. Letdescbe the result of calling the [[GetProperty]] internal metho®akith argumentP. This may be
either an own orriherited accessor property descriptor or an inherited data property descriptor.
6. If IsAccessorDescriptodesg istrue, then
a. Letsetterbedesc[[Set]] (see 8.10) which cannot hndefined.
b. Call the [[Call]] internal method o$etterproviding baseas thethis value and an argument list
containing onlyW.
7. Else, this is a request to create an own property on the transient @bject
a. If Throwis true, then throw alypeError exception.
8. Return.

NOTE The object that may be created in step 1 is not accessible outside of the above method. An implementation
might choose to avoid the actual creation of that transient object. The only situations where such an actual property
assignment that uses this internal method can have visible effect are when it either invokes an accessor function or is in
violation of a Throw predicated error check. When Throwis true any property assignment that would create a hew property
on the transient object throws an error.

8.8 The List Specification Type

The List type is used to explain the evaluation of argument lists (see 11.2.4) in new expressions, in function
calls, and in other algorithms where a simple list of values is needed. Values of the List type are simply
ordered sequences of values. These sequences may be of any length.

8.9 The Completion Specification Type

The Completion type is used to explain the behaviour of statements (break , continue , return and throw)
that perform nonlocal transfers of control. Values of the Completion type are triples of the form (type, value,
target), where type is one of normal, break, continue, return, or throw, value is any ECMAScript language
value or empty, and target is any ECMAScript identifier or empty. If cvis a completion value then cv.type
cv.valug and cv.targetmay be used to directly refer to its constituent values.

36 © Ecma International 2011

secma

The term fabrupt compl et i on dperotbedrthangorrhab any compl eti on

8.10 The Property Descriptor and Property ldentifier Specification Types

The Property Descriptor type is used to explain the manipulation and reification of named property attributes.
Values of the Property Descriptor type are records ¢
attribute name and its value is a corresponding attribute value as specified in 8.6.1. In addition, any field may

be present or absent.

Property Descriptor values may be further classified as data property descriptors and accessor property
descriptors based upon the existence or use of certain fields. A data property descriptor is one that includes
any fields named either [[Value]] or [[Writable]]. An accessor property descriptor is one that includes any fields
named either [[Get]] or [[Set]]. Any property descriptor may have fields named [[Enumerable]] and
[[Configurable]]. A Property Descriptor value may not be both a data property descriptor and an accessor
property descriptor; however, it may be neither. A generic property descriptor is a Property Descriptor value
that is neither a data property descriptor nor an accessor property descriptor. A fully populated property
descriptor is one that is either an accessor property descriptor or a data property descriptor and that has all of
the fields that correspond to the property attributes defined in either 8.6.1 Table 5 or Table 6.

For notational convenience within this specification, an object literal-like syntax can be used to define a
property descriptor value. For example, Property Descriptor {[[Value]]: 42, [[Writable]]: false, [[Configurable]]:
true} defines a data property descriptor. Field name order is not significant. Any fields that are not explicitly
listed are considered to be absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Property
Descriptor. For example, if D is a property descriptor then D.[[Val ue]] is shorthand for
[[Value]]o .

The Property Identifier type is used to associate a property name with a Property Descriptor. Values of the
Property Identifier type are pairs of the form (name, descriptor), where name is a String and descriptor is a
Property Descriptor value.

The following abstract operations are used in this specification to operate upon Property Descriptor values:

8.10.1 IsAccessorDescriptor (Desc)

When the abstract operation IsAccessorDescriptor is called with property descriptor Desg the following steps
are taken:

1. If Descis undefined, thenreturnfalse
2. If bothDesc[[Get]] andDesc|[[Set]] are absent, then retufalse
3. Returntrue.

8.10.2 IsDataDescriptor (Desc)

When the abstract operation IsDataDescriptor is called with property descriptor Desg the following steps are
taken:

1. If Descis undefined, thenreturnfalse.

2. If bothDesc[[Valu€]] and Desc[[Writable]] are absent, then retufalse
3. Returntrue.

8.10.3 IsGenericDescriptor (Desc)

When the abstract operation IsGenericDescriptor is called with property descriptor Desg the following steps
are taken:

1. If Descis undefined, thenreturnfalse
2. If IsAccessorDescriptabes and IsDataDescriptddesg arebothfalse then returrrue.

© Ecma International 2011 37

3.

ecmna

Returnfalse

8.10.4 FromPropertyDescriptor (Desc)

When the abstract operation FromPropertyDescriptor is called with property descriptor Desc the following
steps are taken:

The following algorithm assumes that Descis a fully populated Property Descriptor, such as that returned from
[[GetOwnProperty]] (see 8.12.1).

1.
2.

3.

6.

7.

If Descis undefined, then returrundefined.
Let obj be the result of creating new object as if by the expressioew Object() where Object is the standard
built-in constructor with that name.
If IsDataDesdptor(Desq istrue, then
a. Call the [DefineOwnPropertl} internalmethod ofobj with argumentsvalue ", Property Descriptor
{[[value]]: Desc[[Valuel], [[Writable]]: true, [[Enumerable]]true, [[Configurable]]:true}, andfalse
b. Call the [DefineOwnPrpertyj] internalmethod ofobj with argumentswritable ", Property Descriptor
{[[Value]]: Desc[[Writabld]], [[Writable]]: true, [[Enumerable]]true, [[Configurable]]:true}, andfalse
Else,IsAccessorDescriptabesq must betrue, so
a. Call the [DefineOnvnProperty] internalmethod ofobj with argument8get ", Property Descriptor
{[[Value]]: Desc[[Get]], [[Writable]]: true, [[Enumerable]]true, [[Configurable]]:true}, andfalse
b. Call the [DefineOwnPropert}} internalmethod ofobj with argumentsset ", Property Descriptor
{[[Value]]: Desc[[Set]], [[Writable]]: true, [[Enumerable]]true, [[Configurable]]:true}, andfalse
Call the [DefineOwnPropertl} internalmethod ofobj with argumentsenumerable ", Property Descriptor
{[[Value]]: Desc[[Enumerdle]], [[Writable]]: true, [[Enumerable]]true, [[Configurable]]:true}, andfalse
Call the [DefineOwnPropertl internalmethod ofobj with argumentsconfigurable ", Property Descriptor
{[[Value]]: Desc[[Configurabld], [[Writable]]: true, [[Enumerale]]: true, [[Configurable]]:true}, andfalse.
Returnobj.

8.10.5 ToPropertyDescriptor (Obj)

When the abstract operation ToPropertyDescriptor is called with object Obj, the following steps are taken:

1.
2.
3.

38

If Type(Obj) is not Object throw &ypeError excepton.
Let descbe the result of creating a new Property Descriptor that initially has no fields.
If the result of calling the [[HasProperty]] internal methodQifj with argument Enumerable " is true,
then
a. Letenumbe the result of calling the [[Get]] intemhmethod ofObj with "enumerable ".
b. Setthe [[Enumerable]] field adescto ToBoolean¢nun).
If the result of calling the [[HasProperty]] internal methodQifj with argument onfigurable " is true,
then
a. Letconf be the result of calling the [[Get]] inteal method ofObj with argument
"configurable "
b. Set the [[Configurable]] field oflescto ToBoolean¢onf).
If the result of calling the [[HasProperty]] internal methodQifj with argument Value " is true, then
a. Letvaluebe the result of calling the [[Gdtinternal method oDbjwi t h arvpluem®&.nt A
b. Set the [[Value]] field ofdescto value
If the result of calling the [[HasProperty]] internal methodQifj with argument tritable " is true, then
a. Letwritable be the result of calling the [[Get]] internalethod ofObj with argument vritable "
b. Set the [[Writable]] field ofdescto ToBooleangritable).
If the result of calling the [[HasProperty]] internal methodQifj with argument fet " is true, then
a. Letgetterbe the result of calling the [[Get]] interhmethod ofObj with argument et ".
b. If IsCallable@ette) is false andgetteris notundefined, then throw arypeError exception.
c. Set the [[Get]] field ofdescto getter.
If the result of calling the [[HasProperty]] internal methodQifj with argument et " is true, then
a. Letsetterbe the result of calling the [[Get]] internal method@ij with argument Set ".
b. If IsCallablegette) is false andsetteris notundefined, then throw alypeError exception.
c. Set the [[Set]] field ofdescto setter
If either desc[[Get]] or desc[[Set]] are present, then
a. |If eitherdesc[[Value]] or desc[[Writable]] are present, then throwTeypeError exception.

© Ecma International 2011

secma

10. Returndesc

8.11 The Lexical Environment and Environment Record Specification Types

The Lexical Environment and Environment Record types are used to explain the behaviour of name resolution
in nested functions and blocks. These types and the operations upon them are defined in Clause 10.

8.12 Algorithms for Object Internal Methods

In the following algorithm descriptions, assume O is a native ECMAScript object, P is a String, Descis a
Property Description record, and Throwis a Boolean flag.

8.12.1 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of O is called with property name P, the following steps are
taken:

fOdoesnodt have an o wnretpnumdefieedt v wi t h name
Let D be a navly created Property Descriptarith no fields.
LetXbeO6s own propBerty named
If Xis a data property, then
a. SetD.[[Value]]tothevalueoXds [[Val we]] attribut
b. SetD.[[Writable]]tothevalueoXéds [[Wri table]] attribute
5. ElseXis an accessor property, so
a. SetD.[[Get]] to the value oX6 fGet]] attribute.
b. SetD.[[Set]] to the value oiX6 fSet]] attribute.
6. SetD.[[Enumerable]] to the value 0f6 s [[Bblre]] attebute.
7. SetD.[[Configurable]]tothe valueokés [[Conf i gur abl e]] attribute.
8. ReturnD.

PonNPE

However, if Ois a String object it has a more elaborate [[GetOwnProperty]] internal method defined in 15.5.5.2.

8.12.2 [[GetProperty]] (P)
When the [[GetProperty]] internal method of O is called with property name P, the following steps are taken:

Let prop be the result of calling the [[GetOwnProperty]] internal metho@®afith property nameP.
If propis notundefined, returnprop.

Let proto be the value ofhe [[Prototype]] internal property @.

If protois null, returnundefined.

Return the result of calling the [[GetProperty]] internal methogmfto with argumentP.

RN

8.12.3 [[Get]] (P)
When the [[Get]] internal method of O is called with property name P, the following steps are taken:

Let descbe the result of calling the [[GetProperty]] internal methodokith property nameP.

If descis undefined, returnundefined.

If IsDataDescriptordesq is true, returndesc[[Value]].

Otherwise, IsAccessorDesctgp(desd must be true so, legtetterbe desc[[Get]].

If getteris undefined, returnundefined.

Return the result calling the [[Call]] internal methodgs#tterproviding O as thethis value and providing no
arguments.

cukwNE

8.12.4 [[CanPut]] (P)
When the [[CanPut]] internal method of O is called with property name P, the following steps are taken:

1. Letdeschbe the result of calling the [[GetOwnProperty]] internal metho®afith argumentP.

© Ecma International 2011 39

secma

2. If descis notundefined, then
a. If IsAccessorDescriptodesg istrue, then
i If desc[[Set]] is undefined, then returrfalse.
ii. Else returntrue.
b. Else,descmust be a DataDescriptor so return the valudedc[[Writable]].
Let proto be the [[Prototype]] internal property @f.
If protois null, then return the value of the [[Eisible]] internal property o®.
Let inheritedbe the result of calling the [[GetProperty]] internal methogafto with property nameP.
If inheritedis undefined, return the value of the [[Extensible]] internal propertyCof
If IsAccessorDescriptonfherited) is true, then
a. If inherited[[Set]] is undefined, then returrfalse.
b. Else returrtrue.
8. Else,inheritedmust be a DataDescriptor
a. If the [[Extensible]] internal property d® is false, returnfalse.
b. Else return the value ohherited[[Writable]].

Nouohkw

Host objects may define additional constraints upon [[Put]] operations. If possible, host objects should not
allow [[Put]] operations in situations where this definition of [[CanPut]] returns false.

8.12.5 [[Put]] (P, V, Throw)

When the [[Put]] internal method of O is called with property P, value V, and Boolean flag Throw, the following
steps are taken:

1. If the result ofcalling the [[CanPut]] internal method &f with argumentP is false, then
a. If Throwis true, then throw arypeError exception.
b. Else return
2. LetownDesdoe the result of calling the [[GetOwnPropertifternalmethod ofO with argumentP.
3. If IsDataDescriptorgwnDesg is true, then
a. LetvalueDesde the Property Descriptor {[[Value])}.
b. Call the [[DefineOwnProperty]] internal method @fpassng P, valueDesgcandThrowas
arguments
c. Return.
4. Letdescbe the result of calling the [[GetPropertyiiternalmethod ofO with argumentP. This may be
either an own or inherited accessor property descriptor or an inherited data property descriptor.
5. If IsAccessorDescriptodesg is true, then
a. Letsetterbedesc[[Set]] which cannot beindefined.
b. Call the [[Call]] internalmethod ofsetterproviding O as thethis value and providing/ as the sole
argument.
6. Else, create a named data property namecd object O as follows
a. LetnewDesde the Property Descriptor
{[[Value]]: V, [[Writable]]: true, [[Enumerable]]:true, [[Configurable]]:true}.
b. Call the [[DefineOwnProperty]] internal method @fpassingP, newDescandThrowas arguments
7. Return.

8.12.6 [[HasProperty]] (P)
When the [[HasProperty]] internal method of O is called with property name P, the following steps are taken:
1. Letdesche the result of calling thg GetProperty]linternalmethod ofO with property nameP.

2. |If descis undefined, then returrfalse.
3. Else retirntrue.

8.12.7 [[Delete]] (P, Throw)

When the [[Delete]] internal method of O is called with property name P and the Boolean flag Throw, the
following steps are taken:

1. Letdesche the result of callinghe [[GetOwnPrperty]] internalmethod ofO with property nameP.
2. If descis undefined, then returrtrue.

40 © Ecma International 2011

secma

3. If desc[[Configurable]] istrue, then
a. Remove the own property with narRefrom O.
b. Returntrue.

4. Else if Throw, then throw arypeError exception.

5. Returnfalse

8.12.8 [[DefaultValue]] (hint)

When the [[DefaultValue]] internal method of O is called with hint String, the following steps are taken:

1. LettoStringbe the result of calling the [[Get]] internal method of obj@cvith argument toString "
2. If IsCallabletoString) is true then,
a. Let strbe the result of calling the [[Call]] internal method tofString with O as thethis value and
an empty argument list.
b. If stris a primitive value, returstr.
3. LetvalueOfbe the result of calling the [[Get]] internal method of obj@dtvith argument Valu eOf".
4. If IsCallablefalueO)} is true then,

a. Letvalbe the result of calling the [[Call]] internal methodwalueOf with O as the this value and
an empty argument list.
b. If valis a primitive value, returmal.
5. Throw aTypeError exception.

When the [[DefaultValue]] internal method of O is called with hint Number, the following steps are taken:

1. LetvalueOfbe the result of calling the [[Get]] internal method of obj&cwith argument ValueOf ™
2. |If IsCallablefralueO) is true then,
a. Letvalbe the result ofalling the [[Call]] internal method ofalueOf with O as thethis value and
an empty argument list.
b. If valis a primitive value, returmal.
3. LettoStringbe the result of calling the [[Get]] internal method of obj@cvith argument toString "
4. If IsCallable(toString) is true then,

a. Letstrbe the result of calling the [[Call]] internal methodtofString with O as the this value and
an empty argument list.
b. If stris a primitive value, returstr.
5. Throw aTypeError exception.

When the [[DefaultValue]] internal method of O is called with no hint, then it behaves as if the hint were
Number, unless O is a Date object (see 15.9.6), in which case it behaves as if the hint were String.

The above specification of [[DefaultValue]] for native objects can return only primitive values. If a host object
implements its own [[DefaultValue]] internal method, it must ensure that its [[DefaultValue]] internal method
can return only primitive values.

8.12.9 [[DefineOwnProperty]] (P, Desc, Throw)

In the following algorithm, the t er m A Re j e Throw is tneeathen thidw & TypeError exception,
otherwise return falsed The algorithm contains steps that test various fields of the Property Descriptor Descfor
specific values. The fields that are tested in this manner need not actually exist in Desc If a field is absent
then its value is considered to be false.

When the [[DefineOwnProperty]] internal method of O is called with property name P, property descriptor Desg
and Boolean flag Throw, the following steps are taken:

Letcurrentbe the result of calling the [[GetOwnProperty]] internal metho®afith property name.
Let extensiblebe the value of the [[Extensible]] internal property@f
If currentis undefined andextensiblés false, then Reject.
If currentis undefined andextensiblds true, then
a. If IsGenericDescriptoidesq or IsDataDescriptofjesq is true, then
i Create an own data property nanmfedf objectO whose [[Value]], [[Writable]],
[[Enumerable]] and [[Configurable]] attribute values are describe®ésc. If the value of

PoNPE

© Ecma International 2011 41

secma

an attribute field oDescis absentthe attribute of the newly created property is set to its
default value.
b. Else,Descmust be an accessor Property Descriptor so,
i Create an own accessor property narRexf objectO whose [[Get]], [[St]],
[[Enumerable]] and [[Configurable]] attribute values are describe®ésc If the value of
an attribute field oDescis absent, the attribute of the newly created property is set to its
default value.
c. Returntrue.
Returntrue, if every field inDe< is absent.
Returntrue, if every field inDescalso occurs ircurrentand the value of every field iDescis the same
value as the corresponding field éarrentwhen compared usinthe SameValue algorithm (9.12).
7. If the [[Configurable]] field ofcurrent is falsethen
a. Reject, if the [[Configurable]] field oDescis true.
b. Reject, if the [[Enumerable]] field dbescis present and the [[Enumerable]] fieldsafrrentand
Descare the Boolean negation of each other.
If IsGenericDescriptoiesq is true, then no further validation is required.
Else, if IsDataDescriptocurrent) and IsDataDescriptoblesg have different results, then
a. Reject, if the [[Configurable]] field o€urrentis false.
b. If IsDataDescriptorgurrent) is true, then
i. Convert the property nagal P of objectO from a data property to an accessor property.
Preserve the existing values of the converted
[[Enumer able]] attributes and set the rest of

oo

©

c. Else,
i Convert theproperty namedP of objectO from an accessor property to a data property.
Preserve the existing values of the converted
[[Enumer able]] attributes and set the rest of
10. Else,if IsDataDescriptorgurrenf) and IsDataDescriptoesq are bothtrue, then
a. If the [[Configurable]] field ofcurrentis false, then
i. Reject, if the [[Writable]] field ofcurrentis false and the [[Writable]] field ofDescis true.
ii. If the [[Writable]] field of currentis false, then
1. Reject, if the [[Value]] field oDescis present and SameValisc[[Value]],
current[[Value]]) is false.
b. else, the [[Configurable]] field ofurrentis true, so any change is acceptable.
11. Else, IsAccessorDescriptanfrrent) and IsAccessorDescriptobesq are bothtrue so,
a. If the [[Configurable]] field ofcurrentis false, then
i Reject, if the [[Set]] field oDescis present and SameValuEsc[[Set]], current[[Set]]) is
false.
ii. Reject, if the [[Get]] field ofDescis present ath SameValudpesc[[Get]], current[[Get]])
is false.
12. For each attribute field dDescthat is present, set the correspondingly named attribute of the property
namedP of objectO to the value of the field.
13. Returntrue.

However, if O is an Array object, it has a more elaborate [[DefineOwnProperty]] internal method defined in
15.4.5.1.

NOTE Step 10.b all ows any field of Desc to be different fr
[[Configurable]] field is true. This even permits changing the [[Value]] of a property whose [[Writable]] attribute is false.

This is allowed because a true [[Configurable]] attribute would permit an equivalent sequence of calls where [[Writable]] is

first set to true, a new [[Value]] is set, and then [[Writable]] is set to false.

9 Type Conversion and Testing

The ECMAScript runtime system performs automatic type conversion as needed. To clarify the semantics of
certain constructs it is useful to define a set of conversion abstract operations. These abstract operations are
not a part of the language; they are defined here to aid the specification of the semantics of the language. The
conversion abstract operations are polymorphic; that is, they can accept a value of any ECMAScript language
type, but not of specification types.

42 © Ecma International 2011

eCina

9.1 ToPrimitive

The abstract operation ToPrimitive takes an input argument and an optional argument PreferredType The
abstract operation ToPrimitive converts its input argument to a non-Object type. If an object is capable of
converting to more than one primitive type, it may use the optional hint PreferredTypeto favour that type.

Conversion occurs according to Table 10:

Table 10 8 ToPrimitive Conversions

Input Type Result

Undefined The result equals the inputargument (no conversion).

Null The result equals the inputargument (no conversion).

Boolean The result equals the input argument (no conversion).

Number The result equals the inputargument (no conversion).

String The result equals the inputargument (no conversion).

Object Return a default value for the Object. The default value of an object is
retrieved by calling the [[DefaultValue]] internal method of the object,
passing the optional hint PreferredType The behaviour of the
[[DefaultValue]] internal method is defined by this specification for all native
ECMAScript objects in 8.12.8.

9.2 ToBoolean

The abstract operation ToBoolean converts its argument to a value of type Boolean according to Table 11:

Table 11 8 ToBoolean Conversions

Argument Type Result

Undefined false

Null false

Boolean The result equals the input argument (no conversion).

Number The result is false if the argument is +0, - 0, or NaN; otherwise the result is
true.

String The result is false if the argument is the empty String (its length is zero);
otherwise the result is true.

Object true

9.3 ToNumber

The abstract operation ToNumber converts its argument to a value of type Number according to Table 12:

© Ecma International 2011

43

secma

Table 126 To Number Conversions

Argument Type Result

Undefined NaN

Null +0

Boolean The result is 1 if the argument is true. The result is +0 if the argument is
false.

Number The result equals the input argument (no conversion).

String See grammar and note below.

Object Apply the following steps:
1. LetprimValuebe ToPrimitive{nput argumenthint Number).
2. Retun ToNumbenprimValug.

9.3.1 ToNumber Applied to the String Type

ToNumber applied to Strings applies the following grammar to the input String. If the grammar cannot interpret

the String as an expansion of StringNumericLiterglthen the result of TONumber is NaN.

Syntax

StringNumericLiterat::
StrwhiteSpacg;

StrWhiteSpacg: StrNumericLiteral StrwhiteSpage

StrWhiteSpace::

StrwhiteSpaceChar StrwhiteSpgge

StrWhiteSpaceChar:
WhiteSpace
LineTerminator

StrNumericLiteral::
StrDecimalLiteral
HexntegerLiteral

StrDecimalLiteral:::

StrUnsignedDecimalLiteral
+ StrUnsignedDecimalLiteral
- StrUnsignedDecimalLiteral

StrUnsignedDecimalLiterat:

Infinity

DecimalDigits. DecimalDigits,: ExponentPag;
. DecimalDigits ExponentPayj;
DecimalDigits EyonentPar

DecimalDigits:::
DecimalDigit

DecimalDigitsDecimalDigit

DecimalDigit::: one of

0123456789

ExponentPart::

Exponentindicator Signedinteger

44

© Ecma International 2011

secma

Exponentindicator:: one of
e E

Signedinteger::
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiteralt::
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit::: one of
0123456789abcdefABCDETF

Some differences should be noted between the syntax of a StringNumericLiteraland a NumericLiteral (see
7.8.3):

A StringNumericLiteraimay be preceded and/or followed by white space and/or line terminators.
A StringNumericLiterathat is decimal may have any number of leading O digits.

A StringNumericLiterathat is decimal may be preceded by + or - to indicate its sign.

A StringNumericLiterathat is empty or contains only white space is converted to +0.

=A =4 =4 =4

The conversion of a String to a Number value is similar overall to the determination of the Number value for a
numeric literal (see 7.8.3), but some of the details are different, so the process for converting a String numeric
literal to a value of Number type is given here in full. This value is determined in two steps: first, a
mathematical value (MV) is derived from the String numeric literal; second, this mathematical value is rounded
as described below.

1 The MV of StringNumericLiteral:: [empty] is O.

1 The MV of StringNumericLiterat:: StrwhiteSpaces 0.

1 The MV of StringNumericLiteral ::: StrWhiteSpacg: StrNumericLiteral StrwhiteSpce,,; is the MV of

StrNumericLiteral no matter whether white space is present or not.

The MV of StrNumericLiteral::: StrDecimalLiteralis the MV of StrDecimalLiteral

The MV of StrNumericLiteral::: HexIntegerLiteralis the MV of HexIntegerLiteral

The MV of StrDecimalLiteral::: StrUnsignedDecimalLiterak the MV of StrUnsignedDecimalLiteral

The MV of StrDecimalLiteral::: + StrUnsignedDecimalLiterab the MV of StrUnsignedDecimalLiteral

The MV of StrDecimalLiteral ::: - StrUnsignedDecimallLiteralis the negative of the MV of

StrUnsignedDecimalLiteral(Note that if the MV of StrUnsignedDecimalLiterak 0, the negative of this MV is

also 0. The rounding rule described below handles the conversion of this signless mathematical zero to a

floating-point +0 or - 0 as appropriate.)

The MV of StrUnsignedDecimalLiteral: Infinity is 10'°°%(a value so large that it will round to +a).

The MV of StrUnsignedDecimalLiteral: DecimalDigits is the MV of DecimalDigits

1 The MV of StrUnsignedDecimalLiteral: DecimalDigits. DecimalDigitsis the MV of the first DecimalDigits
plus (the MV of the second DecimalDigitstimes 10"), where n is the number of characters in the second
DecimalDigits

1 The MV of StrUnsignedDecimalLiterat DecimalDigits ExponentPartis the MV of DecimalDigitstimes 16,
whereeis the MV of ExponentPart

1 The MV of StrUnsignedDecimalLiterat DecimalDigits DecimalDigits ExponentParis (the MV of the first
DecimalDigitsplus (the MV of the secondecimalDigitstimes 10") times 16, wheren is the number of characters
in the secondecimalDigits andeis the MV of ExponentPart

1 The MV of StrUnsignedDecimallLiterat . DecimalDigitsis the MV of DecimalDigitstimes 10", wheren is the
number of characters DecimalDigis.

f The MV of StrUnsignedDecimalLiterat:. DecimalDigits ExponentPaiis the MV of DecimalDigitstimes 16",
wheren is the number of charactershrecimalDigits ande is the MV of ExponentPart

1 The MV of StrUnsignedDecimalLiterat DecimalDigitsis the MV of DecimalDigits

=A =4 =8 -8 -9

E

© Ecma International 2011 45

ecina

1 The MV of StrUnsignedDecimalLiterat DecimalDigits ExponentPartis the MV of DecimalDigitstimes 16,
whereeis the MV of ExponentPart

1 The MV of DecimalDigits::: DecimalDigitis the MV of DecimalDigit

The MV of DecimalDigits::: DecimalDigitsDecimaDigit is (the MV of DecimalDigitstimes 10) plus the MV of

DecimalDigit

The MV of ExponentPart:: Exponentindicator Signedintegisrthe MV of Signedinteger

The MV of Signedinteger:: DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger:: + DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger:: - DecimalDigitsis the negative of the MV dbecimalDigits

The MV of DecimalDigit::: 0 or of HexDigit::: 0 is O.

The MV of DecimalDigit::: 1 or of HexDigit::: 1is 1.

The MV of DecimalDigit::: 2 or of HexDigit::: 2 is 2.

The MV of DecimalDigit::: 3 or of HexDigit::: 3 is 3.

The MV of DecimalDigit::: 4 or of HexDigit::: 4 is 4.

The MV of DecimalDigit::: 5 or of HexDigit::: 5 is 5.

The MV of DecimalDigit::: 6 or of HexDigit ::: 6 is 6.

The MV of DecimalDigit::: 7 or of HexDigit::: 7 is 7.

The MV of DecimalDigit::: 8 or of HexDigit::: 8 is 8.

The MV of DecimalDigit::: 9 or of HexDigit::: 9 is 9.

The MV of HexDigit::: a or of HexDigit::: Ais 10.

The MV of HexDigit::: b or of HexDigit::: Bis 11.

The MV of HexDigit::: ¢ or of HexDigit::: Cis 12.

The MV of HexDigit::: d or of HexDigit::: Dis 13.

The MV of HexDigit::: e or of HexDigit::: Eis 14.

The MV of HexDigit::: f or of HexDigit::: Fis 15.

The MV of HexIntegerLiteral::: Ox HexDigitis the MV of HexDigit

The MV of HexlIntegerLiteral:: 0X HexDigitis the MV of HexDigit

The MV of HexIntegerLiteral::: HexIntegerLiteralHexDigit is (the MV of HexIntegerLiteraltimes 16) plus the
MV of HexDigit

Once the exact MV for a String numeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0, then the rounded value is +0 unless the first non white space character in the
String nume+6i,c ilni twehriaclindédszakéeis -10.FOtherwise, the rounded value must be the
Number value for the MV (in the sense defined in 8.5), unless the literal includes a StrUnsignedDecimalLiteral
and the literal has more than 20 significant digits, in which case the Number value may be either the Number
value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit or the
Number value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit
and then incrementing the literal at the 20th digit position. A digit is significant if it is not part of an ExponentPart
and

i1 itisnotO; or

1 there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPatrtto its right.

=

= =4 =4 -4 -8 4 -4 -8 8 -8 -8 -8 -8 -8 -8 -2 _8 5 -2 -2 -9 -2 -9

9.4 Tolnteger

The abstract operation Tolnteger converts its argument to an integral numeric value. This abstract operation
functions as follows:

Let numberbe the result of calling ToNumber on the input argument.
If numberis NaN, return+0.

If numberis +0, - 0, +&, or - &, returnnumber

Return the result of computing sign(mbej 3 floor(absfiumbey)).

PwbdPE

46 © Ecma International 2011

secma

9.5 TolInt32: (Signed 32 Bit Integer)

The abstract operation Tolnt32 converts its argument to one of 2°? integer values in the range - 2*! through
2°% 1, inclusive. This abstract operation functions as follows:

Let numberbe the result of calling ToNumber on the input argument.

If numberis NaN, +0, -0, +a, or-a, return+0.

Let posintbe signumbe) * floor(absfumbe}).

Let int32bit be posintmodulo 2% that is, a finite iteger value k of Number type with positive sign and less
than 22 in magnitude such that the mathematical differencepa$intand k is mathematically an integer
multiple of 22,

5. If int32bitis greater than or equal td'2returnint32bit- 232, otherwisereturnint32bit.

PwoNE

NOTE Given the above definition of Tolnt32:

1 The Tolnt32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves that
value unchanged.

1 TolInt32(ToUint32K)) is equal to Tolnt32() for all values of x. (It is to preserve this latter property that +a and -a are
mapped to +0.)

1 ToInt32 maps - 0 to +0.

9.6 ToUint32: (Unsigned 32 Bit Integer)

The abstract operation ToUint32 converts its argument to one of 2*? integer values in the range 0 through 2°* 1,
inclusive. This abstraction operation functions as follows:

Let numberbe the result of calling ToNumber on the input argument.

If numberis NaN, +0,-0, +a, or- &, return+0.

Let posintbe signfumbe) 3 floor(absfumbey).

Let int32bit be posintmoduo 2°% that is, a finite integer value k of Number type with positive sign and less
than 22 in magnitude such that the mathematical differenceadintand k is mathematically an integer
multiple of 2*2.

5. Returnint32bit.

PR

NOTE Given the above definition of ToUInt32:

1 Step 5is the only difference between ToUint32 and Tolnt32.

1 The ToUint32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves
that value unchanged.

1 ToUint32(ToInt32K)) is equal to ToUint32() for all values of x. (It is to preserve this latter property that +& and -& are
mapped to +0.)

1 ToUint32 maps - 0 to +0.

9.7 ToUintl6: (Unsigned 16 Bit Integer)

The abstract operation ToUint16 converts its argument to one of 2'® integer values in the range 0 through 2'*- 1,
inclusive. This abstract operation functions as follows:

Let numberbe the result of calling ToNumber on the input argument.

If numberis NaN, +0,- 0, +o, or- @, return+0.

Let posintbe signfumbej 3 floor(absfiumbey)).

Let int16bit be posintmodulo 2% that is, a finite integer valule of Number type with positive sign and less
than 2° in magnitude such that the mathematical differencea$intand k is mathematically an integer
multiple of 2°.

5. Returnintl6bit.

PobdE

NOTE Given the above definition of ToUint16:

1 The substitution of 2'® for 2%2in step 4 is the only difference between ToUint32 and ToUint16.
1 ToUintl6 maps - 0 to +0.

© Ecma International 2011 47

ecmna

9.8 ToString

The abstract operation ToString converts its argument to a value of type String according to Table 13:

Table 138 ToString Conversions

Argument Type Result

Undefined "undefined"

Null "null"

Boolean If the argument is true, then the result is "true"
If the argument is false, then the result is "false"

Number See 9.8.1.

String Return the input argument (no conversion)

Object Apply the following steps:
1. LetprimValuebe ToPrimitive(input argument, hint String).
2. Return ToString{rimValue.

9.8.1 ToString Applied to the Number Type

The abstract operation ToString converts a Number mto String format as follows:

SARESI S

10.

If mis NaN, return the StringNaN" .

If mis +0or -0, return the String0" .

If mis less than zero, return the String concatenation of the Strifigand ToString{ m).

If mis infinity, return the StrindInfinity"

Otherwise, len, k, ands be integers such th&tz 1, 10°* ¢ s< 10, the Number value fos3 10" *is m, and
kis as small as possible. Note ttats the number of digits in the decimal representatios, ofiatsis not
divisible by 10, and that the least significamgitl of sis not necessarily uniquely determined by these
criteria.

If k¢ n¢ 21, return the String consisting of tkaligits of the decimal representation of s (in order, with no
leading zeroes), followed by-koc cur r ences d®bB.t he character 6

If 0 <n¢ 21, return the String consisting of the most significatigits of the decimal representation ©f
foll owed by abddetombhbwedi ki didgith & the deecmaal represegtation of

If -6 <n¢ O, return the String consistimgf t he ®©®,arfacltleowed byda dell onaéd ploy
-noccurrences ob,t hel t bldiyitoftthe dacitn& representation of

Otherwise, ifk = 1, return the String consisting of the single digitspfollowed bylowve r cas e ®whar act er
foll owed bytdaop!| ms nbda bagcaciogrnd i 6nrg 1 i$ positiwenoe nepadve, followed by
the decimal representation of the integer ab4j (with no leading zeroes).

Return the String consisting of the most sigrafit digit of the decimal representations)ffollowed by a
deci mal point 0. 0, K bdidgitsotoivtkeddecbnal repriesentationspfmlioweid byghe

| ower cas eedc h afroalcltoewe dé+6 yom mi w08 sascscigogrnddh@rrg 1 is positiven e t
or negative, followed by the decimal representation of the integenabs(with no leading zeroes).

NOTE 1 The following observations may be useful as guidelines for implementations, but are not part of the normative
requirements of this Standard:

f
f

If x is any Number value other than - 0, then ToNumber(ToString(x)) is exactly the same Number value as x.
The least significant digit of s is not always uniquely determined by the requirements listed in step 5.

NOTE 2 For implementations that provide more accurate conversions than required by the rules above, it is
recommended that the following alternative version of step 5 be used as a guideline:

48

Otherwise, len, k, ands be integers such thie 1, 10°* ¢ s< 10, theNumbervalue fors3 10" *is m, andk is as small as
possible. If there are multiple possibilities &choose the value sffor whichs? 10™¥is closest in value tm. If there are
two such possible values gfchoose the one that is even. Note thiatthe number fodigits in the decimal representation of
sand thasis not divisible by 10.

© Ecma International 2011

secmd

NOTE 3 Implementers of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-decimal

conversion of floating-point numbers:

Gay, David M. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. Numerical Analysis,
Manuscript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990. Available as
http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz. Associated code available as
http://cm.bell-labs.com/netlib/fp/dtoa.c.gz and as

http://cm.bell-labs.com/netlib/fp/g_fmt.c.gz and may also be found at the various netlib

9.9 ToObject

mirror sites.

The abstract operation ToObject converts its argument to a value of type Object according to Table 14:

Table 14 0 ToObject

Argument Type Result

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Create a new Boolean object whose [[PrimitiveValue]] internal property is
set to the value of the argument. See 15.6 for a description of Boolean
objects.

Number Create a new Number object whose [[PrimitiveValue]] internal property is
set to the value of the argument. See 15.7 for a description of Number
objects.

String Create a new String object whose [[PrimitiveValue]] internal property is set
to the value of the argument. See 15.5 for a description of String objects.

Object The result is the input argument (no conversion).

9.10 CheckObjectCoercible

The abstract operation CheckObjectCoercible throws an error if its argument is a value that cannot be

converted to an Object using ToObject. It is defined by Table 15:

Table 153 CheckObjectCoercible Results

Argument Type Result
Undefined Throw a TypeError exception.
Null Throw a TypeError exception.
Boolean Return
Number Return
String Return
Object Return

9.11 IsCallable

The abstract operation IsCallable determines if its argument, which must be an ECMAScript language value,

is a callable function Object according to Table 16:

© Ecma International 2011

secma

Table 16 0 IsCallable Results

Argument Type Result

Undefined Return false.

Null Return false.

Boolean Return false.

Number Return false.

String Return false.

Object If the argument object has a [[Call]] internal method, then return true,

otherwise return false.

9.12 The SameValue Algorithm

The internal comparison abstract operation SameValue(x, y), where x and y are ECMAScript language values,
produces true or false. Such a comparison is performed as follows:

If Type(x) is different from Typey), returnfalse.
If Type(x) is Undefined, returtrue.
If Type(x) is Null, returntrue.
If Type(x) is Number, then.
a. If xis NaN andy is NaN, returrtrue.
b. If xis +0 andy is -0, returnfalse.
c. If xis-0 andyis +0, returnfalse.
d. If xis the same Number value gsreturntrue.
e. Returnfalse
5. If Type(x) is String, then returtrue if x andy are exactly the same sequence of characters (same length and
same characters in corresponding positions); otherwise, rédlsa
If Type(X) is Boolean, returitrue if x andy are bothtrue or bothfalse; otherwise returnfalse.
Return true ifx andy refer to the same object. Otherwise, rettatse.

PR

No

10 Executable Code and Execution Contexts

10.1 Types of Executable Code
There are three types of ECMAScript executable code:

1 Global code is source text that is treated as an ECMAScript Program The global code of a
particular Programdoes not include any source text that is parsed as part of a FunctionBody

1 Eval code is the source text supplied to the built-in eval function. More precisely, if the parameter
to the built-in eval function is a String, it is treated as an ECMAScript Program The eval code for a
particular invocation of eval is the global code portion of that Program

1 Function code is source text that is parsed as part of a FunctionBody The function code of a
particular FunctionBody does not include any source text that is parsed as part of a nested
FunctionBody Function code also denotes the source text supplied when using the built-in
Function object as a constructor. More precisely, the last parameter provided to the Function
constructor is converted to a String and treated as the FunctionBody If more than one parameter is
provided to the Function constructor, all parameters except the last one are converted to Strings
and concatenated together, separated by commas. The resulting String is interpreted as the
FormalParameterListfor the FunctionBodydefined by the last parameter. The function code for a
particular instantiation of a Function does not include any source text that is parsed as part of a
nested FunctionBody

50 © Ecma International 2011

secma

10.1.1 Strict Mode Code

An ECMAScript Program syntactic unit may be processed using either unrestricted or strict mode syntax and
semantics. When processed using strict mode the three types of ECMAScript code are referred to as strict
global code, strict eval code, and strict function code. Code is interpreted as strict mode code in the following
situations:

1 Global code is strict global code if it begins with a Directive Prologue that contains a Use Strict Directive
(see 14.1).

1 Eval code is strict eval code if it begins with a Directive Prologue that contains a Use Strict Directive or if
the call to eval is a direct call (see 15.1.2.1.1) to the eval function that is contained in strict mode code.

1 Function code that is part of a FunctionDetaration, FunctionExpressionor accessor PropertyAssignmens
strict function code if its FunctionDeclaration FunctionExpressionor PropertyAssignmeris contained in strict
mode code or if the function code begins with a Directive Prologue that contains a Use Strict Directive.

1 Function code that is supplied as the last argument to the built-in Function constructor is strict function
code if the last argument is a String that when processed as a FunctionBodybegins with a Directive
Prologue that contains a Use Strict Directive.

10.2 Lexical Environments

A Lexical Environment is a specification type used to define the association of Identifiersto specific variables
and functions based upon the lexical nesting structure of ECMAScript code. A Lexical Environment consists of
an Environment Record and a possibly null reference to an outer Lexical Environment. Usually a Lexical
Environment is associated with some specific syntactic structure of ECMAScript code such as a
FunctionDeclaration a WithStatementor a Catch clause of a TryStatemenand a new Lexical Environment is
created each time such code is evaluated.

An Environment Record records the identifier bindings that are created within the scope of its associated
Lexical Environment.

The outer environment reference is used to model the logical nesting of Lexical Environment values. The
outer reference of a (inner) Lexical Environment is a reference to the Lexical Environment that logically
surrounds the inner Lexical Environment. An outer Lexical Environment may, of course, have its own outer
Lexical Environment. A Lexical Environment may serve as the outer environment for multiple inner Lexical
Environments. For example, if a FunctionDeclarationcontains two nested FunctionDeclarationghen the Lexical
Environments of each of the nested functions will have as their outer Lexical Environment the Lexical
Environment of the current execution of the surrounding function.

Lexical Environments and Environment Record values are purely specification mechanisms and need not
correspond to any specific artefact of an ECMAScript implementation. It is impossible for an ECMAScript
program to directly access or manipulate such values.

10.2.1 Environment Records

There are two kinds of Environment Record values used in this specification: declarative environment records
and object environment records. Declarative environment records are used to define the effect of ECMAScript
language syntactic elements such as FunctionDeclarationsVariableDeclarationsand Catchclauses that directly
associate identifier bindings with ECMAScript language values. Object environment records are used to define
the effect of ECMAScript elements such as Program and WithStatementhat associate identifier bindings with
the properties of some object.

For specification purposes Environment Record values can be thought of as existing in a simple object-

oriented hierarchy where Environment Record is an abstract class with two concrete subclasses, declarative
environment record and object environment record. The abstract class includes the abstract specification

© Ecma International 2011 51

»eCma

methods defined in Table 17. These abstract methods have distinct concrete algorithms for each of the

concrete subclasses.

Table 17 8 Abstract Methods of Environment Records

Method

Purpose

HasBinding(N)

Determine if an environment record has a binding for an
identifier. Return true if it does and false if it does not. The
String value N is the text of the identifier.

CreateMutableBinding(N, D)

Create a new mutable binding in an environment record. The
String value N is the text of the bound name. If the optional
Boolean argument D is true the binding is may be subsequently
deleted.

SetMutableBinding(N,V, S)

Set the value of an already existing mutable binding in an
environment record. The String value N is the text of the bound
name. V is the value for the binding and may be a value of any
ECMAScript language type. Sis a Boolean flag. If Sis true and
the binding cannot be set throw a TypeError exception. S is
used to identify strict mode references.

GetBindingValue(N,S)

Returns the value of an already existing binding from an
environment record. The String value N is the text of the bound
name. S is used to identify strict mode references. If Sis true
and the binding does not exist or is uninitialised throw a
ReferenceError exception.

DeleteBinding(N)

Delete a binding from an environment record. The String value N
is the text of the bound name If a binding for N exists, remove
the binding and return true. If the binding exists but cannot be
removed return false. If the binding does not exist return true.

ImplicitThisValue()

Returns the value to use as the this value on calls to function
objects that are obtained as binding values from this
environment record.

10.2.1.1 Declarative Environment Records

Each declarative environment record is associated with an ECMAScript program scope containing variable
and/or function declarations. A declarative environment record binds the set of identifiers defined by the

declarations contained within its scope.

In addition to the mutable bindings supported by all Environment Records, declarative environment records
also provide for immutable bindings. An immutable binding is one where the association between an identifier
and a value may not be modified once it has been established. Creation and initialisation of immutable binding
are distinct steps so it is possible for such bindings to exist in either an initialised or uninitialised state.
Declarative environment records support the methods listed in Table 18 in addition to the Environment Record

abstract specification methods:

Table 18 8 Additional Methods of Declarative Environment Records

Method Purpose

CreatelmmutableBinding(N) Create a new but uninitialised immutable binding in an
environment record. The String value N is the text of the bound
name.

InitializelmmutableBinding(N,V) | Set the value of an already existing but uninitialised immutable
binding in an environment record. The String value N is the text
of the bound name. V is the value for the binding and is a value
of any ECMAScript language type.

52

© Ecma International 2011

secma

The behaviour of the concrete specification methods for Declarative Environment Records is defined by the
following algorithms.

10.2.1.1.1 HasBinding(N)

The concrete environment record method HasBinding for declarative environment records simply determines
if the argument identifier is one of the identifiers bound by the record:

1. LetenvRede the declarative environment record for which the method was invoked.
2. If envRedas a binding for theame that is the value &f, returntrue.
3. If it does not have such a binding, retdatse.

10.2.1.1.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for declarative environment records creates
a new mutable binding for the name N that is initialised to the value undefined. A binding must not already
exist in this Environment Record for N. If Boolean argument D is provided and has the value true the new
binding is marked as being subject to deletion.

1. LetenvRede the declarative environment record for which the method was invoked.

2. Assert:envRedaoes not already have a binding fér

3. Create a mutable binding envRedor N and set its bound value tondefined. If D is true record that the
newly created binding malye deleted by a subsequent DeleteBinding call.

10.2.1.1.3 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for declarative environment records attempts to
change the bound value of the current binding of the identifier whose name is the value of the argument N to
the value of argument V. A binding for N must already exist. If the binding is an immutable binding, a
TypeError is thrown if Sis true.

Let envRedbe the declarative environment record for which the method waxkéad.
Assert:envReanust have a binding fax.

If the binding forN in envReds a mutable binding, change its bound valu&/to

Else this must be an attempt to change the value of an immutable bindin§ igdrifie throw aTypeError
exception.

PoNE

10.2.1.1.4 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for declarative environment records simply
returns the value of its bound identifier whose name is the value of the argument N. The binding must already
exist. If Sis true and the binding is an uninitialised immutable binding throw a ReferenceError exception.

1. LetenvRede the declarative environment record for which the method was invoked.
2. Assert:envRedas a binding folN.
3. If the binding forN in envReds an uninitialisedmmutable binding, then
a. If Sisfalse return the valueindefined, otherwise throw &eferenceError exception.
4. Else, return the value currently boundNan envRec

10.2.1.1.5 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for declarative environment records can only delete
bindings that have been explicitly designated as being subject to deletion.

1. LetenvRede the declarative environment record for which the method was invoked.

2. If envRedoes not have a binding for the name thahis value ofN, returntrue.
3. If the binding forN in envReds cannot be deleted, retufalse.

© Ecma International 2011 53

secma

4. Remove the binding foN from envRec
5. Returntrue.

10.2.1.1.6 ImplicitThisValue()
Declarative Environment Records always return undefined as their ImplicitThisValue.

1. Returnundefined.

10.2.1.1.7 CreatelmmutableBinding (N)

The concrete Environment Record method CreatelmmutableBinding for declarative environment records
creates a new immutable binding for the name N that is initialised to the value undefined. A binding must not
already exist in this environment record for N.

1. LetenvRede the declarative environment record for which the method was invoked.
2. Assert:envRedaoes not already have a binding fér
3. Create an immutable binding envRedor N and recordhat it is uninitialised.

10.2.1.1.8 InitializelmmutableBinding (N,V)

The concrete Environment Record method InitializelmmutableBinding for declarative environment records is
used to set the bound value of the current binding of the identifier whose name is the value of the argument N
to the value of argument V. An uninitialised immutable binding for N must already exist.

1. LetenvRede the declarative environment record for which the method was invoked.
2. Assert:envReanust have an uninitialised immutablending for N.

3. Set the bound value fd¥ in envRedo V.

4. Record that the immutable binding firin envRedas been initialised.

10.2.1.2 Object Environment Records

Each object environment record is associated with an object called its binding object. An object environment
record binds the set of identifier names that directly correspond to the property names of its binding object.
Property names that are not an IdentifierNameare not included in the set of bound identifiers. Both own and
inherited properties are included in the set regardless of the setting of their [[Enumerable]] attribute. Because
properties can be dynamically added and deleted from objects, the set of identifiers bound by an object
environment record may potentially change as a side-effect of any operation that adds or deletes properties.
Any bindings that are created as a result of such a side-effect are considered to be a mutable binding even if
the Writable attribute of the corresponding property has the value false. Immutable bindings do not exist for
object environment records.

Object environment records can be configured to provide their binding object as an implicit this value for use
in function calls. This capability is used to specify the behaviour of With Statement (12.10) induced bindings.
The capability is controlled by a provideThisBoolean value that is associated with each object environment
record. By default, the value of provideThisis false for any object environment record.

The behaviour of the concrete specification methods for Object Environment Records is defined by the
following algorithms.

10.2.1.2.1 HasBinding(N)

The concrete Environment Record method HasBinding for object environment records determines if its
associated binding object has a property whose name is the value of the argument N:

1. LetenvRede the object environment record for which the method was invoked.

2. Letbindingsbe the binding object foenvRec
3. Return the result of calling the [[HasProperty]] internal methoBinflings passing\N as the propeytname.

54 © Ecma International 2011

secma

10.2.1.2.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for object environment records creates in

an environment recordébés associated binding objectt a
to the value undefined. A property named N must not already exist in the binding object. If Boolean argument

D is provided and has the value truet he new propertyos [[Co ntrue, gthemviaeditlise |]
set to false.

1. LetenvRedethe object environment record for which the method was invoked.

2. Letbindingsbe the binding object foenvRec

3. Assert: The result of calling the [[HasProperty]] internal metho8inflings passingN as the property
name, isfalse.

4. If Distrue then letconfigValuebetrue otherwise letconfigValuebe false.

5. Call the [[DefineOwnProperty]] internal method bindings passingN, Property Descriptor
{[[Value]]: undefined, [[Writable]]: true, [[Enumerable]]true , [[Configurable]]:configValué, andtrue as
arguments.

10.2.1.2.3 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for object environment records attempts to set

the value of the environment recordds associated bin
argument N to the value of argument V. A property named N should already exist but if it does not or is not
currently writable, error handling is determined by the value of the Boolean argument S

1. LetenvRedoe the object environment record for which thethod was invoked.
2. Letbindingsbe the binding object foenvRec
3. Call the [[Put]] internal method dfindingswith argumentsN, V, andS.

10.2.1.2.4 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for object environment records returns the value
of its associated binding objectds property wiNoThe na
property should already exist but if it does not the result depends upon the value of the Sargument:

1. LetenvRede the objecenvironment record for which the method was invoked.
2. Letbindingsbe the binding object foenvRec
3. Letvaluebe the result of calling the [[HasProperty]] internal methodbiofdings passingN as the property
name.
4. |If valueis false, then
a. If Sisfalse return the valuaindefined, otherwise throw &eferenceError exception.
5. Return the result of calling the [[Get]] internal methodbifidings passingN for the argument.

10.2.1.2.5 DeleteBinding (N)

The concrete Environment Record method DeleteBinding for object environment records can only delete
bindings that correspond to properties of the environment object whose [[Configurable]] attribute have the
value true.

1. LetenvRede the object environment record for which the method was invoked.
2. Letbindingsbe the binding object foenvRec
3. Return the result of calling the [[Delete]] internal methodaofdings passing\ andfalse as arguments.

10.2.1.2.6 ImplicitThisValue()
Object Environment Records return undefined as their ImplicitThisValue unless their provideThisflag is true.
1. LetenvRede the object environment record for which the method was invoked.

2. |If the provideThisflag of envReds true, return the binding object faanvRec
3. Otherwise, returundefined.

© Ecma International 2011 55

pecma

10.2.2 Lexical Environment Operations

The following abstract operations are used in this specification to operate upon lexical environments:

10.2.2.1 GetldentifierReference (lex, name, strict)

The abstract operation GetldentifierReference is called with a Lexical Environment lex, an identifier String
name and a Boolean flag strict. The value of lexmay be null. When called, the following steps are performed:

1. If lexis the valuenull, then
a. Return a value of type Reference whose base valuadsfined, whose referenced nameriame
and whose strict nae flag isstrict.
2. LetenvRedelexb s environment record.
3. Letexistsbe the result of calling the HasBinding)(concrete method adnvRegassingnameas the
argumentN.
4. |If existsistrue , then
a. Return a value of type Reference whose base valaaviRegwhose referenced namename and
whose strict mode flag istrict.
5. Else
a. Letouterbe the value of e odtes environment reference.
b. Retunthe result of calling GetldentifierReference passinger, name andstrict as arguments

10.2.2.2 NewDeclarativeEnvironment (E)

When the abstract operation NewDeclarativeEnvironment is called with either a Lexical Environment or null
as argument E the following steps are performed:

Let envbe a new Lexical Environment.

Let envRede a newdeclarativeenvironmentrecord containing no bindings.
Sete n veavsronment record to benvRec

Set the outer lexical emmonment reference oénvto E.

Returnenv.

ghrwdE

10.2.2.3 NewObjectEnvironment (O, E)

When the abstract operation NewObjectEnvironment is called with an Object O and a Lexical Environment E
(or null) as arguments, the following steps are performed:

Let envbe a new Lexical Environment.

Let envRede a new object environment record containhgs the binding object.
Sete n veavsronment record to benvRec

Set the ater lexical environment reference efvto E.

Returnenv.

ghrwdE

10.2.3 The Global Environment

The global environment is a unique Lexical Environment which is created before any ECMAScript code is
executed. The gl obal envir onme n tt&@msvirorfent recom nvmsen iindilge c or d i
object is the gl obal object (15.1). The gulobal environme

As ECMAScript code is executed, additional properties may be added to the global object and the initial
properties may be modified.

10.3 Execution Contexts

When control is transferred to ECMAScript executable code, control is entering an execution context. Active
execution contexts logically form a stack. The top execution context on this logical stack is the running
execution context. A new execution context is created whenever control is transferred from the executable
code associated with the currently running execution context to executable code that is not associated with

56 © Ecma International 2011

secma

that execution context. The newly created execution context is pushed onto the stack and becomes the
running execution context.

An execution context contains whatever state is necessary to track the execution progress of its associated
code. In addition, each execution context has the state components listed in Table 19.

Table 19 0 Execution Context State Components

Component Purpose

LexicalEnvironment Identifies the Lexical Environment used to resolve identifier references
made by code within this execution context.

VariableEnvironment Identifies the Lexical Environment whose environment record holds

bindings created by VariableStatementand FunctionDeclarationswithin
this execution context.

ThisBinding The value associated with the this keyword within ECMAScript code
associated with this execution context.

The LexicalEnvironment and VariableEnvironment components of an execution context are always Lexical
Environments. When an execution context is created its LexicalEnvironment and VariableEnvironment
components initially have the same value. The value of the VariableEnvironment component never changes
while the value of the LexicalEnvironment component may change during execution of code within an
execution context.

In most situations only the running execution context (the top of the execution context stack) is directly
mani pul at ed by algorithms wi t hin t his specificatio
Avari abl eEnvironmento and AThi sBindingod are used wi
components of the running execution context.

An execution context is purely a specification mechanism and need not correspond to any particular artefact
of an ECMAScript implementation. It is impossible for an ECMAScript program to access an execution
context.

10.3.1 Identifier Resolution

Identifier resolution is the process of determining the binding of an Identifier using the LexicalEnvironment of
the running execution context. During execution of ECMAScript code, the syntactic production
PrimaryExpression Identifier is evaluated using the following algorithm:
1. Letenvbe the running execution contextoés Lexical Envi
2. If the syntactic production that is being evaluated is contained in a strict mode code, thteictiée true,

else letstrict befalse.
3. Return the result of calig GetldentifierReference function passieigy, Identifier, andstrict as arguments.

The result of evaluating an identifier is always a value of type Reference with its referenced name component
equal to the Identifier String.

10.4 Establishing an Execution Context

Evaluation of global code or code using the eval function (15.1.2.1) establishes and enters a new execution
context. Every invocation of an ECMAScript code function (13.2.1) also establishes and enters a new
execution context, even if a function is calling itself recursively. Every return exits an execution context. A
thrown exception may also exit one or more execution contexts.

When contr ol enters an execution context, the executi

and initial LexicalEnvironment are defined, and declaration binding instantiation (10.5) is performed. The exact
manner in which these actions occur depend on the type of code being entered.

© Ecma International 2011 57

secma

10.4.1 Entering Global Code
The following steps are performed when control enters the execution context for global code:

1. Initialise the execution context using the global code as described in 10.4.1.1.
2. PerformDeclaration Binding Instantiation as described in 10.5 using the global code.

10.4.1.1 Initial Global Execution Context
The following steps are performed to initialise a global execution context for ECMAScript code C:

1. Set the VariableEnvironment to the Global Environment.
2. Set the LexicalEnvironment to the Global Environment.
3. Set the ThisBinding to the global object.

10.4.2 Entering Eval Code
The following steps are performed when control enters the execution context for eval code:

1. If there is no calling context or if the eval code is not being evaluated by a direct call (15.1.2.1.1) to the eval
function then,
a. |Initialise theexecution context as if it was a global execution context using the eval cdtlasas
described in 10.4.1.1.
2. Else,
a. Set the ThisBinding to the same value as the ThisBinding of the calling execution context.
b. Set the LexicalEnvironment to the same value asligxicalEnvironment of the calling execution
context.
c. Set the VariableEnvironment to the same value as the VariableEnvironment of the calling execution
context.
3. If the eval code is strict code, then
a. LetstrictvarEnvbe the result of calling NewDeclaratiZavironment passing the
LexicalEnvironment as the argument.
b. Set the LexicalEnvironment tatrictVarEnv
c. Set the VariableEnvironment &irictVarEnv
4. Perform Declaration Binding Instantiation as described in 10.5 using the eval code.

10.4.2.1 Strict Mode Restrictions
The eval code cannot instantiate variable or function bindings in the variable environment of the calling

context that invoked the eval if either the code of the calling context or the eval code is strict code. Instead
such bindings are instantiated in a new VariableEnvironment that is only accessible to the eval code.

10.4.3 Entering Function Code

The following steps are performed when control enters the execution context for function code contained in
function object F, a caller provided thisArg, and a caller provided argumentsList

1. If the function code is strict code, set the ThisBindinghicArg.

2. Else ifthisArgis null or undefined, set the ThisBinding to the global object.

3. Else if TypethisArg) is not Object, set the ThisBinding to ToObjéhisArg).

4. Else set the ThisBinding tihisArg.

5. LetlocalEnvbe the result of calling NewDeclarativeEnvironmepdssing the value of the [[Scope]] internal
property ofF as the argument.

6. Set the LexicalEnvironment tocalEnv.

7. Set the VariableEnvironmeéro localEnv.

8. LetcodebethevalueoFés [[Code]] internal property.

9. Perform Declaration Binding Instantiation using the function cod@eandargumentsLists described in
10.5.

58 © Ecma International 2011

ecina

10.5 Declaration Binding Instantiation

Every execution context has an associated VariableEnvironment. Variables and functions declared in
ECMAScri pt code evaluated in an execution context
Environment Record. For function code, parameters are also added as bindings to that Environment Record.

Which Environment Record is used to bind a declaration and its kind depends upon the type of ECMAScript
code executed by the execution context, but the remainder of the behaviour is generic. On entering an
execution context, bindings are created in the VariableEnvironment as follows using the caller provided code
and, if it is function code, argument List args

Letenvbe the environment record component of the r
If codeis eval code, then leonfigurableBindingdetrue else letconfigurableBindingde false.
If codeis strict mode code, then lstrict betrue else letstrict befalse.
If codeis function code, then
a. Letfuncbe the function whose [[Call]] internal method initiated executiocafe Let nameshe

PonNE

u

ar

n

the valueofundds [[For mal Par amet er s]] i nternal proper

b. LetargCountbe the number of elements angs.
c. Letn be the number 0.
d. For each StringargNamein names in list order do
i Let n be the current value af plus 1.
ii. If nis greder thanargCount letv beundefined otherwise letv be the value of thed t h
element ofargs.
iii. Let argAlreadyDeclarede the result of calling n vHasBinding concrete method passing
argNameas the argument.
iv. If argAlreadyDeclareds false, calle n vGieateMutableBinding concrete method passing
argNameas the argument.
V. Call e n vS@tMutableBinding concrete method passamgName v, andstrict as the
arguments.
5. For eachFunctionDeclarationf in code in source text order do
a. Letfnbe theldentifierin FunctionDeclarationf.
b. Letfobe the result of instantiatingunctionDeclaration fas described in Clause 13.
c. LetfuncAlreadyDeclarede the result of calling n vHasBinding concrete method passifingas
the argument.
d. If funcAlreadyDeclareds false, callen v €reateMutableBinding concrete method pasgimgnd
configurableBindingss the arguments.
e. Else ifenvis the environment record component of the global environment then
i Let go be the global object.
ii. Let existingPropbe the resulting of calling the [[&Property]] internal method afo with
argumentfn.
iii. If existingProp.[[Configurable]] istrue, then
1. Call the [[DefineOwnProperty]] internal method gb, passingn, Property
Descriptor {[[Value]]: undefined, [[Writable]]: true, [[Enumerable]]itrue ,
[[Configurable]]: configurableBindingg, andtrue as arguments.
iv. Else if IsAccessorDesiptor(existingProp or existingPropdoes not have attribute values
{[[Writable]]: true, [[Enumerable]]itrue}, then
1. Throw a TypeError exception.
f. Calle n vS&tMutableBinding concrete method passifig fo, andstrict as the arguments.
6. LetargumentsAlreadyDeclarele the result of calling n vHasBinding concrete method passing
"arguments" as the argument.
7. If codeis function code andrgumentsAlreadyDeclareid false, then

a. LetargsObjbe the result of calling the abstract operation CreateArgumentsObject (10.6) passing

func, names, arggnvandstrict as arguments.
b. If strictistrue, then

i Callends Createl mmutabl eBi ndi ng ¢ anmgunerdst'eas met h

the argument.

ii. Callends I nitializel mmutabl eBi arguments "amncr et e

argsObjas arguments.
c. Else,

© Ecma International 2011 59

secma

i Callends CreateMutabl eBinding comgumerttse"amthd hod p a:
argument.

ii. Callends Set Mut abl e Bithodpassimgdcgomests & argsObjandfalse
as arguments.
8. For eachvariableDeclarationandVariableDeclarationNolrd in code in source text order do
a. Letdnbe theldentifierin d.
b. LetvarAlreadyDeclarede the result of calling n vHasBinding concretenethod passingn as the
argument.
c. If varAlreadyDeclareds false, then
i Callends CreateMutabl eBi ndi ndgandconfiguratdeBiadingsest hod p a
the arguments.
ii. Callends Set Mut abl eBi ndi ng dnocumdefinedeandstrichasthdr od passi |
arguments.

10.6 Arguments Object

When control enters an execution context for function code, an arguments object is created unless (as
specified in 10.5) the identifier arguments occurs as an Identifieri n t h e fFarmaParaneted.istor
occurs as the Identifier of a VariableDeclarationor FunctionDeclarationcontained in the function code.

The arguments object is created by calling the abstract operation CreateArgumentsObject with arguments func

the function object whose code is to be evaluated, namesa L i st containing the functio
names, argsthe actual arguments passed to the [[Call]] internal method, envthe variable environment for the

function code, and strict a Boolean that indicates whether or not the function code is strict code. When
CreateArgumentsObiject is called the following steps are performed:

Let len be the number of elements amgs.
Let obj be the result of creating a new ECMAScript object.
Setall the internal methodsf obj as specified in 8.12
Set the [[Clas]] internal property obbjto " Arguments
Let Objectbe the standard buiih Object constructor (15.2.2).
Set the [[Prototype]] internal property objto the standard buiin Object prototype object (15.2.4).
Call the [[DefineOwnProperty]] internahethod orobj passing'length ", the Property Descriptor
{[[Value]]: len, [[Writable]]: true, [[Enumerable]]:false, [[Configurable]]:true}, andfalse as arguments.
8. Letmapbe the result of creating a new object as if by the expressanObject() whereObject is

the standard buiin constructor with that name
9. Let mappedNamebe an empty List.
10. Letindx=1len - 1.
11. Repeat whilandx >= 0,

a. Letval be the element adrgsat O-origined list positionndx.

b. Call the [[DefineOwnProperty]] internal method obj passing ToString(dx), the property
descriptor {[[Value]]:val, [[Writable]]: true, [[Enumerable]]itrue, [[Configurable]]:true}, and
falseas arguments.

c. If indxis less than the number of elementsiames then

i Let namebe the element afamesat O-origined list positionindx.
ii. If strictis false andnameis not an element ofnappedNameghen
1. Addnameas an element of the listappedNames
2. Letgbe the result of calling thelakeArgGettembstract operation with arguments
nameandenv.
3. Letpbe the reslt of calling theMakeArgSetteabstract operation with arguments
nameandenv.
4. Call the [[DefineOwnProperty]] internal method wfappassing ToStringdx), the
Property Descriptor {[[Set]]p, [[Get]]: g, [[Configurable]]:true}, and falseas
arguments.

d. Letindx=indx-1

12. If mappedNames not empty, then

a. Set the [[ParameterMap]] internal propertyaifj to map

b. Setthe [[Get]], [[GetOwnProperty]], [[DefineOwnProperty]], and [[Delete]] internal methodsbpf
to the definitions provided below.

NoohrwbE

60 © Ecma International 2011

secma

13. If strictis false, then

a. Call the [[DefineOwnProperty]] internal method obj passing tallee ", the property descriptor
{[[Value]]: func, [[Writable]]: true, [[Enumerable]]false, [[Configurable]]:true}, andfalseas
arguments.

14. Else,strictis true so

a. Letthrowe be the [[ThrowTypeError]] function Object (13.2.3).

b. Call the [[DefineOwnProperty]] internal method obj with arguments'caller"
PropertyDescriptor {[[Get]]thrower, [[Set]]: thrower, [[Enumerable]]:false, [[Configurable]]:
false}, andfalse.

c. Call the [[DefineOwnProperty]] internal method obj with arguments'callee”
PropertyDescriptor {[[Get]]thrower, [[Set]]: thrower, [[Enumerable]]:false, [[Configurable]]:
false}, andfalse.

15. Returnobj

The abstract operation MakeArgGetter called with String nameand environment record envcreates a function
object that when executed returns the value bound for namein env It performs the following steps:

1. Letbodybe the result of concatenating the Stringsttirn ", name and '} ".
2. Return the result of creajy a function object as described in 13.2 usingnomalParameterListbodyfor
FunctionBody envasScope andtrue for Strict.

The abstract operation MakeArgSetter called with String nameand environment record envcreates a function
object that when executed sets the value bound for namein env It performs the following steps:

1. Letparambe the Stringnameconcatenated with the String drg ".

2. Letbodybe the String'<name> = <param>; " with <name>replaced by the value sfameand<param>
replaced byte value ofparam

3. Return the result of creating a function object as described in 13.2 using a List containing the single String
paramasFormalParameterListbodyfor FunctionBody envasScope andtrue for Strict.

The [[Get]] internal method of an arguments object for a non-strict mode function with formal parameters when
called with a property name P performs the following steps:

1. Letmapbe the value of the [[ParameterMap]] internal property of the arguments object.
2. LetisMappedbe the result of calfig the [[GetOwnProperty]] internal method wiappassingP as the
argument.
3. If the value ofisMappedis undefined, then
a. Letvbe the result of calling the default [[Get]] internal method (8.12.3) on the arguments object
passingP as the argument.
b. If Pis"caller" andv is astrict modeFunction object, throw a&'ypeError exception.
c. Returnv.
4. Else,mapcontains a formal parameter mapping Poso,
a. Return the result of calling the [[Get]] internal methodnadippassingP as the argument.

The [[GetOwnProperty]] internal method of an arguments object for a non-strict mode function with formal
parameters when called with a property name P performs the following steps:

1. Letdeschbe the result of calling the default [[GetOwnProperty]] internal method (8.12.1he@arguments
object passing as the argument.

2. If descis undefinedthen returndesc

3. Let mapbe the value of the [[ParameterMap]] internal property of the arguments object.

4. LetisMappedbe the result of calling the [[GetOwnProperty]] internal methodnap passingP as the
argument.

5. If the value ofisMappedis notundefined, then

a. Setdesc[[Value]] to the result of calling the [[Get]] internal methodrmBppassingP as the
argument.
6. Returndesc

The [[DefineOwnProperty]] internal method of an arguments object for a non-strict mode function with formal
parameters when called with a property name P, Property Descriptor Des¢ and Boolean flag Throw performs
the following steps:

© Ecma International 2011 61

secma

1. Letmapbe the value of the [[ParameterMap]] internal property of the argusrasject.
2. LetisMappedbe the result of calling the [[GetOwnProperty]] internal methodnappassingP as the
argument.
3. Letallowedbe the result of calling the default [[DefineOwnProperty]] internal method (8)1th the
arguments objegbassingP, Desg andfalse as the arguments.
4. If allowedis false, then
a. If Throwis true then throw alypeError exception, otherwise returfalse.
5. If the value ofisMappedis notundefined, then
a. If IsAccessorDescriptoBesq istrue, then
i Call the [[Delete]] internal methd of mappassingP, andfalse as the arguments.
b. Else
i If Desc[[Value]] is present, then
1. Call the[[Put]] internal method omappassingP, Desc[[Value]], andThrowas the
arguments.
ii. If Desc[[Writable]] is present and its value false, then
1. Call the [[Delete]] internal method ahappassingP andfalse as arguments.
6. Retuntrue.

The [[Delete]] internal method of an arguments object for a non-strict mode function with formal parameters
when called with a property name P and Boolean flag Throw performs the following steps:

1. Letmapbe the value of the [[ParameterMap]] internal property of the arguments object.

2. LetisMappedbe the result of calling the [[GetOwnProperty]] internal methodnappassingP as the
argument.

3. Letresultbe the result of callinghte default [[Delete]] internal method (8.12.7) on the arguments object
passingP and Throwas the arguments.

4. |If resultis true and the value ofsMappedis notundefined, then

a. Call the [[Delete]] internal method ahappassingP, andfalse as the argument
5. Returnresult

NOTE 1 For non-strict mode functions the array index (defined in 15.4) named data properties of an arguments object

whose numeric name values are less than the number of formal parameters of the corresponding function object initially

shar e their values with the corresponding argument bindings in t
the property changes the corresponding value of the argument binding and vice-versa. This correspondence is broken if

such a property is deleted and then redefined or if the property is changed into an accessor property. For strict mode
functions, the values of the arguments objectds properties are
there is no dynamic linkage between the property values and the formal parameter values.

NOTE2 The ParameterMap object and its property values are used as a device for specifying the arguments object
correspondence to argument bindings. The ParameterMap object and the objects that are the values of its properties are
not directly accessible from ECMAScript code. An ECMAScript implementation does not need to actually create or use
such objects to implement the specified semantics.

NOTE 3 Arguments objects for strict mode functions define non-configurable accessor properties named "caller " and
"callee " which throw a TypeError exception on access. The "callee " property has a more specific meaning for non-
strict mode functions and a "caller " property has historically been provided as an implementation-defined extension by
some ECMAScript implementations. The strict mode definition of these properties exists to ensure that neither of them is
defined in any other manner by conforming ECMAScript implementations.

62 © Ecma International 2011

secma

11 Expressions
11.1 Primary Expressions

Syntax

PrimaryExpression
this
Identifier
Literal
ArrayLiteral
ObjectLiteral
(Expression

11.1.1 Thethis Keyword

The this keyword evaluates to the value of the ThisBinding of the current execution context.

11.1.2 Identifier Reference

An ldentifier is evaluated by performing Identifier Resolution as specified in 10.3.1. The result of evaluating an
Identifieris always a value of type Reference.

11.1.3 Literal Reference

A Literal is evaluated as described in 7.8.

11.1.4 Array Initialiser

An array initialiser is an expression describing the initialisation of an Array object, written in a form of a literal.
It is a list of zero or more expressions, each of which represents an array element, enclosed in square
brackets. The elements need not be literals; they are evaluated each time the array initialiser is evaluated.

Array elements may be elided at the beginning, middle or end of the element list. Whenever a comma in the
element list is not preceded by an AssignmentExpressiofi.e., a comma at the beginning or after another
comma), the missing array element contributes to the length of the Array and increases the index of
subsequent elements. Elided array elements are not defined. If an element is elided at the end of an array,
that element does not contribute to the length of the Array.

Syntax

ArrayLiteral :
[Elisiongy]
[ElementList]
[ElementList Elisiong]

ElementList
Elision,; AssignmentExpression
ElementList Elisiony, AssignmentExpression

Elision:

Elision,

Semantics

The production ArrayLiteral : [Elision,,] is evaluated as follows:

© Ecma International 2011 63

secma

1. Letarray be the result of creating a new object as if by the expressganArray() where Array is
the standard buHin constructor with that name.

2. Letpadbe the result of evaluatinglision; if not present, use the numeric value zero.

3. Call the [[Put]] internal method adrray with arguments length ", pad, andfalse.

4. Returnarray.

The production Arrayliteral : [ElementList] is evaluated as follows:

1. Return the result of evaluatirglementList

The production ArrayLiteral : [ElementList Elision,] is evaluated as follows:

Let array be the result of evaluatinglementList

Let pad be the result of evaluatinglision; if not present, use the numeric value zero.

Let len be the result of callinghe [[Get]] internal method ddrray with argument' length .

Call the [[Put]] internal method ddrray with arguments length ", ToUint32pad+len), andfalse.
Returnarray.

oghrwONE

The production ElementList Elision,,: AssignmentExpressiois evaluated as follows:

1. Letarray be the result of creating a new object as if by the expressganArray() where Array is
the standard budin constructor with that name.

2. Letfirstindexbe the result of evaluatinglision; if not present, use the numeric value zero.

3. LetinitResultbe the result of evaluatingssignmentExpression

4. LetinitValuebe GetValuefitResul).

5. Call the [[DefineOwnProperty]] internal method afray with arguments ToStrindifstindex, the Property

Descriptor { [[Value]]:initValue, [[Writable]]: true, [[Enumerable]]true, [[Configurable]]:true}, and
false.
6. Returnarray.

The production ElementList ElementList Elision,,; AssignmentExpressiois evaluated as follows:

Let array be the result of evaluatinglementList

Let pad be the result oévaluatingElision; if not present, use the numeric value zero.

Let initResultbe the result of evaluatingssignmentExpression

LetinitValuebe GetValueifitResul).

Let len be the result of calling the [[Get]] internal methodasfay with argument' len gth .

Call the [[DefineOwnProperty]] internal method afray with arguments ToString(ToUint323gad+len)) and
the Property Descriptor { [[Value]]nitValue, [[Writable]]: true, [[Enumerable]]true, [[Configurable]]:
true}, andfalse.

7. Returnarray.

cukrwnNE

The production Elision: , is evaluated as follows:
1. Return the numeric valuke
The production Elision: Elision, is evaluated as follows:

1. Letprecedingbe the result of evaluatinglision.
2. Returnpreceding1.

NOTE [[DefineOwnProperty]] is used to ensure that own properties are defined for the array even if the standard

built-in Array prototype object has been modified in a manner that would preclude the creation of hew own properties
using [[Put]].

64 © Ecma International 2011

secma

11.1.5 Object Initialiser

An object initialiser is an expression describing the initialisation of an Object, written in a form resembling a
literal. It is a list of zero or more pairs of property names and associated values, enclosed in curly braces. The
values need not be literals; they are evaluated each time the object initialiser is evaluated.

Syntax

ObjectLiteral:

{}
{ PropertyNameAndValueLis}

{ PropertyNameAndValueList }

PropertyNameAndValueList
PropertyAssignment
PropertyNameAndValueList PropertyAssignment

PropertyAssignment
PropertyName AssgnmentExpression
get PropertyName() { FunctionBody}
set PropertyName(PropertySetParameterLisj{ FunctionBody}

PropertyName
IdentifierName
StringLiteral
NumericLiteral

PropertySetParameterList
Identifier

Semantics

The production ObijectLiteral: { } is evaluated as follows:

1. Return a new object created as if by the expressam Object() whereObject is the standard buit
in construcor with that name

The productions ObjectLiteral: { PropertyNameAndValueLi$t and
ObjectLiteral: { PropertyNameAndValuelList} are evaluated as follows:

1. Return the result of evaluatim@gropertyNameAndValueList
The production PropertyNameAndValuelList PropertyAssignmens evaluated as follows:

1. Letobjbe the result of creating a new object as if by the esgiomnew Object() whereObject s the
standard builin constructr with that name

2. Letpropldbe the result of evaluatingropertyAssignment

3. Call the [[DefineOwnProperty]] internal method olfj with argumentgpropld.name propld.descriptor, and
false.

4. Returnob;.

The production
PropertyNameAndValueList PropertyNameAndValueList PropertyAssignment
is evaluated as follows:

1. Letobjbe the result of evaluatingropertyNameAndValueList

2. Letpropldbe the result of evaluatingropertyAssignment

3. Letpreviousbe the result of calling the [[GetOwnProperty]] internal methodljfwith argument
propld.name.

© Ecma International 2011 65

secma

4. |If previousis notundefined then throw aSyntaxError exception if any of the following conditions are true

a. This production is contained in strictde and IsDataDescriptgr(evioug is true and
IsDataDescriptoifropld.descriptor) igrue.

b. IsDataDescriptorfrevioug is true and IsAccessorDescriptgniopld.descriptor) idrue.

c. IsAccessorDescriptopfevioug istrue and IsDataDescriptopfopld.descriptoy is true.

d. IsAccessorDescriptopfevioug istrue and IsAccessorDescriptgn(opld.descriptor) igrue and
either bothpreviousandpropld.descriptor have [[Get]] fields or boftreviousandpropld.descriptor
have [[Set]] fields

5. Call the [[DefineOwnProper{y internal method obbj with argumentgpropld.name propld.descriptor, and
false.
6. Returnobj.

If the above steps would throw a SyntaxError then an implementation must treat the error as an early error
(Clause 16).

The production PropertyAssignmentPropertyName AssignmentExpressias evaluated as follows:

Let propNamebe the result of evaluatingropertyName

Let exprValuebe the result of evaluatingssignmentExpression

Let propValuebe GetValuegxprValug.

Let descbe the Property Descriptor{[[Vak]]: propValue [[Writable]]: true, [[Enumerable]]:true,
[[Configurable]]: true}

5. Return Property IdentifiepfopName desg.

PoONPE

The production PropertyAssignmentget PropertyNamg){ FunctionBody} is evaluated as follows:

1. LetpropNamebe the result bevaluatingPropertyName

2. Letclosurebe the result of creating a new Function object as specified in 13.2 with an empty parameter list
and body specified bifunctionBody Pass in the LexicalEnvironment of the running execution context as the
ScopePassn true as theStrict flag if the PropertyAssignmeris contained in strict code or if its
FunctionBodyis strict code.

3. Letdescbe the Property Descriptor{[[Get]Elosure [[Enumerable]]true, [[Configurable]]:true}

4. Return Property IdentifiepfopName desq.

The production PropertyAssignment set PropertyName(PropertySetParameterLis} { FunctionBody} is

evaluated as follows:

1. LetpropNamebe the result of evaluatingropertyName

2. Letclosurebe the result of creating a new Function object asifipddn 13.2 with parameters specified by
PropertySetParameterListnd body specified bifunctionBody Pass in the LexicalEnvironment of the
running execution context as tiseope Pass irtrue as theStrict flag if the PropertyAssignmernis contained
in strict code or if itd-unctionBodyis strict code.

3. Letdescbe the Property Descriptor{[[Set]Elosure [[Enumerable]]itrue, [[Configurable]]:true}

4. Return Property IdentifieppfopName desg.

It is a SyntaxError if the Identifier "eval® or the Identifier "arguments” occurs as the Identifier in a
PropertySetParameterLisbf a PropertyAssignmerthat is contained in strict code or if iEunctionBodyis strict code

The production PropertyName IdentifierNameis evaluated as follows:

1. Return the Stringalue containing the same sequence of characters ddehgfierName
The production PropertyName StringLiteral is evaluated as follows:

1. Return the SV of th&tringLiteral.

The production PropertyName NumericLiteral is evaluated as follows:

1. Letnbr be the result of forming the value of theimericLiteral

66 © Ecma International 2011

secma

2. Return ToStringgbr).

11.1.6 The Grouping Operator
The production PrimaryExpression (Expression) is evaluated as follows:

1. Return the result of evaluatirgxpression This may be of type Refence.

NOTE This algorithm does not apply GetValue to the result of evaluating Expression. The principal motivation for this
is so that operators such as delete and typeof may be applied to parenthesised expressions.

11.2 Left-Hand-Side Expressions

Syntax

MemberExpression
PrimaryExpression
FunctionExpression
MemberExpressioh Expression
MemberExpression IdentifierName
new MemberExpressiorArguments

NewExpression
MemberExpression
new NewExpression

CallExpression
MemberExpressiorArguments
CallExpression Arguments
CallExpressiorf Expression
CallExpression ldentifierName

Arguments

()
(ArgumentList)

ArgumentList
AssignmentExpression
ArgumentList AssignmentExpression

LeftHandSideExpressian
NewExpression
CallExpression

11.2.1 Property Accessors

Properties are accessed by name, using either the dot notation:
MemberExpression IdentifierName
CallExpression IdentifierName

or the bracket notation:

MemberExpressioh Expressior]
CallExpressiorf Expressior]

The dot notation is explained by the following syntactic conversion:
MemberExpression IdentifierName

is identical in its behaviour to

© Ecma International 2011 67

secma

MemberExpressioh <identifier-namestring>]
and similarly

CallExpression IdentifierName
is identical in its behaviour to

CallExpressior] <identifier-namestring> |

where <identifier-namestring> is a string literal containing the same sequence of characters after processing
of Unicode escape sequences as the IdentifierName

The production MemberExpressionMemberExpressioh Expressior] is evaluated as follows:

Let baseReferencke the result of evaluatinglemberExpressian

Let baseValude GetValuefaseReferenge

Let propertyNameReferendee the result of evaluatingxpression

Let propertyNameValube GetValugfropertyNameReferenge

Call Che&ObjectCoerciblefaseValug

Let propertyNameStrindgpe ToStringpropertyNameValue

If the syntactic production that is being evaluated is contained in strict mode codgjdebetrue, else let
strict befalse.

Return a value of type Reference whossd value ibase/alueand whose referenced name is
propertyNameStringand whose strict mode flag $srict.

NouohkwdhE

©

The production CallExpression CallExpression Expressior] is evaluated in exactly the same manner, except
that the contained CallExpressiors evaluated in step 1.

11.2.2 The new Operator
The production NewExpression new NewExpressiois evaluated as follows:

Let ref be the result of evaluatingewExpression

Let constructorbe GetValuefef).

If Type(constructo) is not Object, throw d&ypeError exception.

If constructordoes not implement the [[Construct]] internal method, throlwpeError exception.

Return the result of calling the [[Construct]] internal methodconstructor providing no arguments (that
is, an empty list of arguments).

ghwhE

The production MemberExpressionnew MemberExpressioArgumentss evaluated as follows:

Let ref be the result of evaluatinggemberExpressian

Let constructorbe GetValue(ef).

Let argList be the result of evaluatingrguments producing an internal list cirgument values (11.2.4).

If Type(constructo) is not Object, throw &ypeError exception.

If constructordoes not implement the [[Construct]] internal method, throWypeError exception.

Return the result of calling the [[Construct]] internal methodconstructor, providing the listargListas the
argument values.

corwNE

11.2.3 Function Calls
The production CallExpression MemberExpressioArgumentds evaluated as follows:

Let ref be the result of evaluatingemberExpressian
Let funcbe GetValueref).
Let argList be the result of evaluatingrguments producing an internal list of argument values (see 11.2.4).
If Type(func) is not Object, throw dypeError exception.
If IsCallablefunc) is false, throw aTypeError exception.
If Type(ref) is Reference, then
a. |If IsPropertyReferenceff) istrue, then

cubhwnNE

68 © Ecma International 2011

secma

i Let thisValuebe GetBaseéf).
b. Else, the base akfis an Environment Record
i Let thisValuebe the result of calling the ImplicitThisValue concrete method of
GetBase(ef).
7. Else, Typefef) is not Reference.
a. LetthisvVdue beundefined.
8. Return the result of calling the [[Call]] internal method famc, providingthisValueas thethis value and
providing the listargList as the argument values.

The production CallExpression CallExpressiorArgumentsis evaluated in exactly the same manner, except that
the contained CallExpressioris evaluated in step 1.

NOTE The returned result will never be of type Reference if funcis a native ECMAScript object. Whether calling a
host object can return a value of type Reference is implementation-dependent. If a value of type Reference is returned, it
must be a non-strict Property Reference.

11.2.4 Argument Lists

The evaluation of an argument list produces a List of values (see 8.8).

The production Arguments () is evaluated as follows:

1. Return an empty List.

The production Arguments (ArgumentList) is evaluated as follows:

1. Return the result of evaluatingrgumentList

The production ArgumentList AssignmentExpressiois evaluated as follows:
1. Letrefbe the result of evaluatingssigimentExpressian

2. Letargbe GetValuefef).

3. Return a List whose sole item asg.

The production ArgumentList ArgumentList, AssignmentExpressiors evaluated as follows:
Let precedingArgde the result of evaluatingrgumentList

Let ref be the result oévaluatingAssignmentExpression

Let arg be GetValueref).

Return a List whose length is one greater than the lengphmexfedingArgsand whose items are the items of
precedingArgsin order, followed at the end arg which is the last item of the newsli

PonNPE

11.2.5 Function Expressions
The production MemberExpression FunctionExpressiofis evaluated as follows:

1. Return the result of evaluatirfgunctionExpression
11.3 Postfix Expressions

Syntax

PostfixExpression
LeftHandSideExpression
LeftHandSideExpre&m [no LineTerminatothere] ++
LeftHandSideExpressiofno LineTerminatorhere] --

© Ecma International 2011 69

ecmad

11.3.1 Postfix Increment Operator

The production PostfixExpression LeftHandSideExpressiomo LineTerminatothere] ++ is evaluated as follows:

1.
2.

Let Ihs be the result of evaating LeftHandSideExpression
Throw aSyntaxError exception if the following conditions are all true:
i Type(hs) is Reference isrue
i IsStrictReferencg@hs) is true
i Type(GetBasdlis)) is Environment Record
i GetReferencedNamk@) is either'eval® or "arguments
Let oldValuebe ToNumber(GetValuéqs)).
Let newValuebe the result of adding the valdeto oldValug using the same rules as for th@perator (see
11.6.3).
Call PutValuelhs, newValug.
ReturnoldValue

11.3.2 Postfix Decrement Operator

The production PostfixExpression LeftHandSideExpressiofno LineTerminatorhere] -- is evaluated as follows:
1. Letlhsbe the result of evaluatinigeftHandSideExpression
2. Throw aSyntaxError exception if the following conditions are all true:
i Type(hs) is Referencés true
i IsStrictReferencghs) is true
i Type(GetBasdlis)) is Environment Record
i GetReferencedNamk@) is either"eval" or "arguments "
3. LetoldValuebe ToNumber(GetValudts)).
4. LetnewValuebe the result of subtracting the valldrom oldValug using thesame rules as for the
operator (11.6.3).
5. Call PutValuelhs, newValug.
6. ReturnoldValue

11.4 Unary Operators

Syntax

UnaryExpression

PostfixExpression

delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
++ UnaryExpression

-- UnaryExpressin

+ UnaryExpression

- UnaryExpression

~ UnaryExpression

I UnaryExpression

11.4.1 The delete Operator

The production UnaryExpression delete UnaryExpressions evaluated as follows:

1.
2.
3.

70

Let ref be the result of evaluatingnaryExpression

If Type(ref) is notReference, returtrue.

If IsUnresolvableReferencef) then,
a. If IsStrictReferencef) istrue, throw aSyntaxError exception.
b. Else, returrtrue.

© Ecma International 2011

secma

4. If IsPropertyReference¢f) is true, then
a. Return the result of calling the [[Delete]] internal method on Teot{GetBasagf)) providing
GetReferencedNameff) and IsStrictReferenceff) as the arguments.
5. Else,refis a Reference tan EnvironmentRecordbinding, so
a. If IsStrictReferenceagf) is true, throw aSyntaxError exception.
b. Lethbindingsbe GetBaséref).
c. Return the result of calling the DeleteBinding concnetethodof bindings providing
GetReferencedNamedf) as the argument.

NOTE When a delete operator occurs within strict mode code, a SyntaxError exception is thrown if its
UnaryExpressions a direct reference to a variable, function argument, or function name. In addition, if a delete operator

occurs within strict mode code and the property to be deleted has the attribute { [[Configurable]]: false }, a TypeError
exception is thrown.

11.4.2 The void Operator

The production UnaryExpression void UnaryExpressiorns evaluated as follows:
1. Letexprbe the result of evaluatingnaryExpression

2. Call GetValueéxpn.

3. Returnundefined.

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.
11.4.3 The typeof Operator
The production UnaryExpression typeof UnaryExpressions evaluated as follows:
1. Letval be the result of evaluatingnaryExpression
2. If Type(val) is Reference, then
a. If IsUnresolvableReferencedl) is true, return"undefined"

b. Letval be GetValuegal).
3. Return a String determined by Type({) according toTable 20

Table 20 0 typeof Operator Results

Type of val Result
Undefined "undefined"
Null "object”
Boolean "boolean”
Number "number"
String "str ing"
Obiject (native and does "object"

not implement [[Call]])

Object (native or host and | "function”
does implement [[Call]])

Object (host and does not | Implementation-defined except may
implement [[Call]]) not be "undefined" , "boolean" ,

"number ", or "str ing".

11.4.4 Prefix Increment Operator
The production UnaryExpression ++ UnaryExpressioris evaluated as follows:

1. Letexprbe the result of evaluating UnaryExpression.
2. Throw aSyntaxError exception if the following conditions are all true:

© Ecma International 2011 71

secma

i Type(expy) is Reference isgrue
1 IsStrictReferenc@xpr) is true
1 Type(GetBasegxpr) is Environment Record
i GetReferencedNamexp?y) is either"eval" or "arguments
3. Letoldvaluebe ToNumber(GetValuekpr)).
4. LetnewValuebe the result of adding the valdeto oldValue using the same rules as for theoperator (see
11.6.3).
5. Call PutValueéxpr, newValué.
6. ReturnnewValue

11.4.5 Prefix Decrement Operator
The production UnaryExpression -- UnaryExpressions evaluated as follows:

1. Letexprbe the result of evaluating Unarygnession.
2. Throw aSyntaxError exception if the following conditions are all true:
i Type(expy) is Reference isrue
i IsStrictReferenc@xpr) is true
i Type(GetBasegfxpr) is Environment Record
i GetReferencedNamexp) is either"eval® or "arguments
3. Letoldvaluebe ToNumber(GetValuekpr)).
4. LetnewValuebe the result of subtractirtge valuel from oldValue using the same rules as for the
operator (see 11.6.3).
5. Call PutValueéxpr, newValug.
6. ReturnnewValue

11.4.6 Unary + Operator
The unary + operator converts its operand to Number type.
The production UnaryExpression + UnaryExpressions evaluated as follows:

1. Letexprbe the result of evaluating UnaryExpression.
2. Return ToNumber(GetValuekpn).

11.4.7 Unary - Operator

The unary - operator converts its operand to Number type and then negates it. Note that negating +0
produces - 0, and negating - 0 produces +0.

The production UnaryExpression - UnaryExpressions evaluated as follows:

Let exprbe the result of evaluating UnaryExpression.

Let oldValuebe ToNumler(GetValueéxpr)).

If oldValueis NaN, returnNaN.

Return the result of negatimgdValue that is, compute a Number with the same magnitude but opposite
sign.

PoONE

11.4.8 Bitwise NOT Operator (~)
The production UnaryExpression ~ UnaryExpressions evaluated as follows:
1. Letexprbe the result of evaluatingnaryExpression

2. LetoldVvaluebe Tolnt32(GetValuefxp)).
3. Return the result of applying bitwise complemenbtdValue The result is a signed 3t integer.

72 © Ecma International 2011

secma

11.4.9 Logical NOT Operator (!)

The production UnaryExpression ! UnaryExpressions evaluated as follows:

PoNPE

Let exprbe the result of evaluatingnaryExpression
Let oldValuebe ToBoolean(GetValuekpn)).

If oldValueis true, returnfalse.

Returntrue.

11.5 Multiplicative Operators

Syntax

MultiplicativeExpression
UnaryExpression
MultiplicativeExpressiorf UnaryExpression
MultiplicativeExpressior UnaryExpression
MultiplicativeExpressiofUnaryExpression

Semantics

The production MultiplicativeExpression MultiplicativeExpression@ UnaryExpressino, where @ stands for one
of the operators in the above definitions, is evaluated as follows:

NoOoAs®NE

Let left be the result of evaluating MultiplicativeExpression.

Let leftValuebe GetValudgft).

Let right be the result of evaluating UnaryExpression.

Let rightValue be GetValuefght).

Let leftNumbe ToNumbergftvValud.

Let rightNumbe ToNumben(ightValueg).

Return the result of applying the specified operation (*, /, or %WgftNumandrightNum See the Notes

below 11.5.111.5.2, 11.5.3

11.5.1 Applying the * Operator

The * operator performs multiplication, producing the product of its operands. Multiplication is commutative.
Multiplication is not always associative in ECMAScript, because of finite precision.

The result of a floating-point multiplication is governed by the rules of IEEE 754 binary double-precision

arithmetic:

f
f

il

If either operand is NaN, the result is NaN.

The sign of the result is positive if both operands have the same sign, negative if the
operands have different signs.

Multiplication of an infinity by a zero results in NaN.

Multiplication of an infinity by an infinity results in an infinity. The sign is determined by the
rule already stated above.

Multiplication of an infinity by a finite nonzero value results in a signed infinity. The sign is
determined by the rule already stated above.

In the remaining cases, where neither an infinity or NaN is involved, the product is computed
and rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If
the magnitude is too large to represent, the result is then an infinity of appropriate sign. If
the magnitude is too small to represent, the result is then a zero of appropriate sign. The
ECMAScript language requires support of gradual underflow as defined by IEEE 754.

© Ecma International 2011 73

secma

11.5.2 Applying the/ Operator

The / operator performs division, producing the quotient of its operands. The left operand is the dividend and
the right operand is the divisor. ECMAScript does not perform integer division. The operands and result of all
division operations are double-precision floating-point numbers. The result of division is determined by the
specification of IEEE 754 arithmetic:

9 If either operand is NaN, the result is NaN.

1 The sign of the result is positive if both operands have the same sign, negative if the
operands have different signs.

9 Division of an infinity by an infinity results in NaN.

1 Division of an infinity by a zero results in an infinity. The sign is determined by the rule
already stated above.

9 Division of an infinity by a nonzero finite value results in a signed infinity. The sign is
determined by the rule already stated above.

i Division of a finite value by an infinity results in zero. The sign is determined by the rule
already stated above.

9 Division of a zero by a zero results in NaN; division of zero by any other finite value results
in zero, with the sign determined by the rule already stated above.

9 Division of a nonzero finite value by a zero results in a signed infinity. The sign is
determined by the rule already stated above.

1 In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the
guotient is computed and rounded to the nearest representable value using IEEE 754 round-
to-nearest mode. If the magnitude is too large to represent, the operation overflows; the
result is then an infinity of appropriate sign. If the magnitude is too small to represent, the
operation underflows and the result is a zero of the appropriate sign. The ECMAScript
language requires support of gradual underflow as defined by IEEE 754.

11.5.3 Applying the %Operator

The %operator yields the remainder of its operands from an implied division; the left operand is the dividend
and the right operand is the divisor.

NOTE In C and C++, the remainder operator accepts only integral operands; in ECMAScript, it also accepts floating-
point operands.

The result of a floating-point remainder operation as computed by the % operator is not the same as the
firemainder o operation defined by | EEE 754. The | EEE 754
from a rounding division, not a truncating division, and so its behaviour is not analogous to that of the usual

integer remainder operator. Instead the ECMAScript language defines % on floating-point operations to

behave in a manner analogous to that of the Java integer remainder operator; this may be compared with the

C library function fmod.

The result of an ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic:
1 If either operand is NaN, the result is NaN.

The sign of the result equals the sign of the dividend.

If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.

If the dividend is finite and the divisor is an infinity, the result equals the dividend.

If the dividend is a zero and the divisor is nonzero and finite, the result is the same as the
dividend.

1 In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the
floating-point remainder r from a dividend n and a divisor d is defined by the mathematical
relation r = n - (d ® gq) where g is an integer that is negative only if n/d is negative and
positive only if n/d is positive, and whose magnitude is as large as possible without
exceeding the magnitude of the true mathematical quotient of n and d. r is computed and
rounded to the nearest representable value using IEEE 754 round-to-nearest mode.

= =4 —a -8

74 © Ecma International 2011

secma

11.6 Additive Operators

Syntax

AdditiveExpression
MultiplicativeExpression
AdditiveExpressior MultiplicativeExpression
AdditiveExpression MultiplicativeExpression

11.6.1 The Addition operator (+)
The addition operator either performs string concatenation or numeric addition.
The production AdditiveExpression AdditiveExpressior MultiplicativeExpressioris evaluated as follows:

Let Iref be the result of evaluatingddlitiveExpression.
Let lval be GetValudgef).
Let rref be the result of evaluating MultiplicativeExpression.
Let rval be GetValuefref).
Let Iprim be ToPrimitive(val).
Let rprim be ToPrimitive(val).
If Type(lprim) is String or Typefprim) is String, the
a. Return the String that is the result of concatenating ToStipnigf) followed by ToStringfprim)
8. Return the result of applying the addition operation to ToNunipeni) and ToNumbemprim). See the
Note below 11.6.3.

NOTE 1 No hint is provided in the calls to ToPrimitive in steps 5 and 6. All native ECMAScript objects except Date
objects handle the absence of a hint as if the hint Number were given; Date objects handle the absence of a hint as if the
hint String were given. Host objects may handle the absence of a hint in some other manner.

NoohswDE

NOTE 2 Step 7 differs from step 3 of the comparison algorithm for the relational operators (11.8.5), by using the
logical-or operation instead of the logical-and operation.

11.6.2 The Subtraction Operator (-)
The production AdditiveExpression AdditiveExpression MultiplicativeExpressioris evaluated as follows:

Let Iref be the result of evaluating AdditiveExpression.

Let Ilval be GetValudfef).

Let rref be the result of evaluating MultiplicativeExpression.

Let rval be GetValuef(ref).

Let Inumbe ToNumbeifal).

Let rnumbe ToNumben(val).

Return the result of applying the subtraction operatiomton andrnum See the note below 11.6.3.

NooAwDE

11.6.3 Applying the Additive Operators to Numbers

The + operator performs addition when applied to two operands of numeric type, producing the sum of the
operands. The - operator performs subtraction, producing the difference of two numeric operands.

Addition is a commutative operation, but not always associative.

The result of an addition is determined using the rules of IEEE 754 binary double-precision arithmetic:
1 If either operand is NaN, the result is NaN.
1 The sum of two infinities of opposite sign is NaN.
1 The sum of two infinities of the same sign is the infinity of that sign.
1 The sum of an infinity and a finite value is equal to the infinite operand.

© Ecma International 2011 75

secma

1 The sum of two negative zeroes is - 0. The sum of two positive zeroes, or of two zeroes of
opposite sign, is +0.

1 The sum of a zero and a nonzero finite value is equal to the nonzero operand.
The sum of two nonzero finite values of the same magnitude and opposite sign is +0.

1 In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, and the
operands have the same sign or have different magnitudes, the sum is computed and
rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If the
magnitude is too large to represent, the operation overflows and the result is then an infinity
of appropriate sign. The ECMAScript language requires support of gradual underflow as
defined by IEEE 754.

=

The - operator performs subtraction when applied to two operands of numeric type, producing the difference
of its operands; the left operand is the minuend and the right operand is the subtrahend. Given numeric
operands a and b, it is always the case that ai b produces the same result as a+(1 b) .

11.7 Bitwise Shift Operators

Syntax

ShiftExpression
AdditiveExpression
ShiftExpressior< AdditiveExpression
ShiftExpressior> AdditiveExpression
ShiftExpressior>> AdditiveExpression

11.7.1 The Left Shift Operator (<<)
Performs a bitwise left shift operation on the left operand by the amount specified by the right operand.
The production ShiftExpression ShiftExpressior< AdditiveExpressiois evaluated as follows:

Let Iref be the result of evaluatinghiftExpression

Let lval be GetValudfef).

Let rref be the result of evaluatingdditiveExpression

Let rval be GetValuefref).

Let Inumbe Tolnt32(val).

Let rnumbe ToUint32¢val).

Let shiftCountbe the result ofmasking out all but the least significant 5 bitsrofim, that is, computenum
& Ox1F.

8. Return the result of left shiftinthum by shiftCountbits. The result is a signed 31t integer.

NoukwbpE

11.7.2 The Signed Right Shift Operator (>>)

Performs a sign-filling bitwise right shift operation on the left operand by the amount specified by the right
operand.

The production ShiftExpression ShiftExpressiorr> AdditiveExpressiois evaluated as follows:

Let Iref be the result of evaluatinghiftExpression

Let Ival be GetValudfef).

Let rref be the result of evaluatingdditiveExpression

Let rval be GetValuefref).

Let Inumbe Tolnt32[val).

Let rnumbe ToUint32¢val).

Let shiftCountbe the result of masking out all but the least significant 5 bitaief, that 5, computanum
& Ox1F.

NouohkwbhE

76 © Ecma International 2011

secma

8. Return the result of performing a sigxtending right shift ofnum by shiftCountbits. The most significant
bit is propagated. The result is a signedi@tinteger.

11.7.3 The Unsigned Right Shift Operator (>>>)

Performs a zero-filling bitwise right shift operation on the left operand by the amount specified by the right
operand.

The production ShiftExpression ShiftExpressiorr>> AdditiveExpressioiis evaluated as follows:

Let Iref be the result of evaluatinghiftExpression

Let Ival be GetValudfef).

Let rref be the result of evaluatingdditiveExpression

Let rval be GetValuefref).

Let Inumbe ToUint32(val).

Let rnumbe ToUint32(val).

Let shiftCountbe the result of masking out all but the least significant 5 bitaiardn, that is, computenum
& Ox1F.

Return the result of performing a zefitling right shift of Inum by shiftCountbits. Vacated bits are filled
with zero. The result is an unsigned-B integer.

NogAs®NE

©

11.8 Relational Operators

Syntax

RelationalExpression
ShitExpression
RelationalExpressior ShiftExpression
RelationalExpressior ShiftExpression
RelationalExpressior= ShiftExpression
RelationalExpressior= ShiftExpression
RelationalExpressioinstanceof ShiftExpression
RelationalExpressioim ShiftExpressin

RelationalExpressionNoin
ShiftExpression
RelationalExpressionNolx ShiftExpression
RelationalExpressionNoln ShiftExpression
RelationalExpressionNolx= ShiftExpression
RelationalExpressionNoln= ShiftExpression
RelationalExpressionNolimstanceof ShiftExpression

NOTE The #fANolnd variants ar e n @éeaperator ih a relationaliexpressiannwithutiseiim g
operator in a for statement.

Semantics

The result of evaluating a relational operator is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.

The RelationalExpressionNolmproductions are evaluated in the same manner as the RelationalExpression
productions except that the contained RelationalExpressionNolns evaluated instead of the contained
RelationalExpressian

11.8.1 The Less-than Operator (<)

The production RelationalExpression RelationalExpressior ShiftExpressiofis evaluated as follows:

© Ecma International 2011 77

t

h

secma

Let Iref be the result of evaluatingelationalExpression

Let lval be GetVédue(ref).

Let rref be the result of evaluatinghiftExpression

Let rval be GetValuesfef).

Letr be the result of performing abstract relational comparisah< rval. (see 11.8.5)
If ris undefined, returnfalse. Otherwise, returm.

curwNE

11.8.2 The Greater-than Operator (>)

The production RelationalExpression : RelationalExpressior ShiftExpressiolis evaluated as follows:

1. Letlref be the result of evaluatingelationalExpression

2. Letlval be GetValudfef).

3. Letrref be the result of evaluatinghiftExpession

4. Letrval be GetValuefref).

5. Letr be the result of performing abstract relational comparis@ah< Ival with LeftFirstequal tofalse. (see
11.8.5).

6. If r isundefined, returnfalse. Otherwise, returm.

11.8.3 The Less-than-or-equal Operator (<=)

The production RelationalExpression : RelationalExpressior= ShiftExpressioris evaluated as follows:

1. Letlref be the result of evaluatingelationalExpression

2. Letlval be GetValudfef).

3. Letrref be the result of evaluatinghiftExpression

4. Letrval be GetValue(ref).

5. Letr be the result of performing abstract relational comparisah< lval with LeftFirst equal tofalse. (see
11.8.5).

6. If ristrue orundefined, returnfalse. Otherwise, returtrue.

11.8.4 The Greater-than-or-equal Operator (>=)
The production RelationalExpression : RelationalExpressior= ShiftExpressiofis evaluated as follows:

Let Iref be the result of evaluatingelationalExpression

Let Ival be GetValudfef).

Let rref be the result of evaluatinghiftExpression

Let rval be GetValuefref).

Letr be the result of performing abstract relational comparisah< rval. (see 11.8.5)
If ristrue or undefined, returnfalse. Otherwise, returtrue.

cuprwNE

11.8.5 The Abstract Relational Comparison Algorithm

The comparison x <y, where x and y are values, produces true, false, or undefined (which indicates that at
least one operand is NaN). In addition to x and y the algorithm takes a Boolean flag named LeftFirst as a
parameter. The flag is used to control the order in which operations with potentially visible side-effects are
performed upon x and y. It is necessary because ECMAScript specifies left to right evaluation of expressions.

The default value of LeftFirstis true and indicates that the x parameter corresponds to an expression that
occurs to the leftoftheypar amet er 8s cor r e s pleftFistinfglseethe pevesse & the case | f
and operations must be performed upon y before x. Such a comparison is performed as follows:

1. If the LeftFirstflag istrue, then
a. Letpxbe the result of calling ToPrimitivex, hint Number).
b. Letpybe the result of calling ToPrimitivg(hint Number).
2. Else the order of evaluation needs to be reversed to preserve left to right evaluation
a. Letpybe the result of calling ToPrimitivg(hint Number).
b. Let pxbe the result of calling ToPrimitive(hint Number).

78 © Ecma International 2011

secma

3. Ifitis not the case that both Typgeq is String and Typety) is String, then
a. Letnxbe the result of calling ToNumbgxf). Becausgx andpy are primitive values evaluation
order is not importat.
Let ny be the result of calling ToNumbexy).
If nxis NaN, returnundefined.
If nyis NaN, returnundefined.
If nxandny are the samd&lumbervalue, returrfalse.
If nxis +0 andny s - O, returnfalse.
If nxis-0andnyis +0, returnfalse.
If nxis +o, returnfalse.
If nyis +8o, returntrue.
If nyis-®a, returnfalse
If nxis-ga, returntrue.
If the mathematical value afxis less than the mathematical valuengfd note that these
mathematical values are both finite and not both @eneturntrue. Otherwise, returralse.
4. Else, bothpxandpy are Strings

a. If pyis a prefix ofpx, returnfalse. (A Stringvaluep is a prefix ofStringvalueq if g can be the
result of concatenating and some othe®tringr. Note that anystringis a prefix of itself,because
may be the empt$tring.)

b. If pxis a prefix ofpy, returntrue.

c. Letkbe the smallest nonnegative integer such that the character at pdsititrin pxis different
from the character at positidawithin py. (There must be suchka for neithe Stringis a prefix of
the other.)

d. Letmbe the integer that is the code unit value for the character at pokitiithin px.

Let n be the integer that is the code unit value for the character at pokitigthin py.
If m<n, returntrue. Otherwise, raurnfalse.

XTI SQ 0000

o

NOTE 1 Step 3 differs from step 7 in the algorithm for the addition operator + (11.6.1) in using and instead of or.

NOTE 2 The comparison of Strings uses a simple lexicographic ordering on sequences of code unit values. There is no
attempt to use the more complex, semantically oriented definitions of character or string equality and collating order
defined in the Unicode specification. Therefore String values that are canonically equal according to the Unicode standard
could test as unequal. In effect this algorithm assumes that both Strings are already in normalised form. Also, note that for
strings containing supplementary characters, lexicographic ordering on sequences of UTF-16 code unit values differs from
that on sequences of code point values.

11.8.6 The instanceof operator
The production RelationalExpressianRelationalExpressioinstanceof ShiftExpressiols evaluated as follows:

Let Iref be the result of evaluatingelationalExpression

Let Ilval be GetValudfef).

Let rref be the resulbf evaluatingShiftExpression

Let rval be GetValuefref).

If Type(rval) is not Object, throw &ypeError exception.

If rval does not have a [[HasInstance]] internal method, throw@eError exception.
Return the result of callinthe [[Haslnstance]] intal method ofval with argumentval.

NogoA~®NE

11.8.7 The in operator
The production RelationalExpression RelationalExpressioin ShiftExpressiotis evaluated as follows:

Let Iref be the result of evaluatingelationalExpression

Let Ilval be GetValudfef).

Let rref be the result of evaluatinghiftExpression

Let rval be GetValuef(ref).

If Type(rval) is not Object, throw &ypeError exception.

Return the result of callinthe [[HasProperty]] internal method ofal with argument ToStrindyal).

ocabkwnNE

© Ecma International 2011 79

secma

11.9 Equality Operators

Syntax

EqualityExpression
RelationalExpression
EqualityExpressiorr= RelationalExpression
EqualityExpressiot= RelationalExpression
EqualityExpressior== RelationalExpression
EqualityExpressiot== RelationalExpression

EqualityExpressionNoln
RelationalExpressionNoln
EqualityExpressionNola= RelationalExpressionNoln
EqualityExpressionNolfr RelationalExpressionNoln
EqualityExpressionNola== RelationalExpressionNoln
EqualityExpressionNoltr= RelationalExpressionNoln

Semantics

The result of evaluating an equality operator is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.

The EqualityExpressionNolnproductions are evaluated in the same manner as the EqualityExpression
productions except that the contained EqualityExpressionNolrand RelationalExpressionNolrare evaluated
instead of the contained EqualityExpressiomnd RelationalExpressigrrespectively.

11.9.1 The Equals Operator (==
The production EqualityExpression : EqualityExpressior== RelationalExpressiois evaluated as follows:

Let Iref be the result of evaluatingqualityExpression

Let Ival be GetValudfef).

Let rref be the result of evaluatingelationalExpression

Let rval be GetValuefref).

Return the result of péarming abstract equality comparisowal == Ival. (see 11.9.3).

gArLDE

11.9.2 The Does-not-equals Operator (!=)
The production EqualityExpression : EqualityExpressioh= RelationalExpressiors evaluated as follows:

Let Iref be the result of evaluatingqualityExpression

Let Ival be GetValudfef).

Let rref be the result of evaluatingelationalExpression

Let rval be GetValuesref).

Letr be the result of performing abstract equality comparis@h == Ival. (see 11.9.3).
If ristrue, returnfalse. Otherwise returntrue.

curwNE

11.9.3 The Abstract Equality Comparison Algorithm

The comparison x ==y, where x and y are values, produces true or false. Such a comparison is performed as
follows:

1. If Type(x) is the same as Typg(then
a. If Type(x) is Undefined, returir ue.
b. If Type(x) is Null, returntrue.
c. If Type(x) is Number, then
i If xis NaN, returnfalse.

80 © Ecma International 2011

ecina

ii. If yis NaN, returnfalse.
iii. If xis the saméNumbervalue asy, returntrue.

iv. If xis +0 andy is - 0O, returntrue.
V. If xis-0andy is +0, returntrue.
vi. Returnfalse.

d. If Type(x) is String, then returtrue if x andy are exactly the same sequence of characters (same
length and same characters in corresponding positions). Otherwise, fagean
e. If Type(x) is Boolean, returtrue if x andy are bothtrue or bothfalse. Otherwise, returralse.
f. Returntrue if x andy refer to the same object. Otherwise, rettatse.
If xis null andy is undefined, returntrue.
If xis undefined andy is null, returntrue.
If Type(x) is Number and Type] is String,
return the result othe comparisox == ToNumbery).
5. If Type(x) is String and Typs/) is Number,
return the result of the comparison ToNumbg=y.
6. If Type(x) is Boolean, return the result of the comparison ToNumdert y.
7. If Type(y) is Boolean, return the result of tciemparisorx == ToNumbery).
8. If Type(x) is either String or Number and Typg(s Object,
return the result of the comparisgr== ToPrimitivef).
9. If Type(x) is Object and Typs@j is either String or Number,
return the result of the comparison ToPrimitixet=Yy.
10. Returnfalse.

PN

NOTE 1 Given the above definition of equality:
1 String comparison can be forced by:
1 Numeric comparison can be forced by: +a == +b
1 Boolean comparison can be forced by: la =='b

+a:=nu+b

NOTE 2 The equality operators maintain the following invariants:

=a

A= Bis equivalentto !(A ==B).
1 A== Bis equivalent to B== A, except in the order of evaluation of A and B.

NOTE 3 The equality operator is not always transitive. For example, there might be two distinct String objects, each
representing the same String value; each String object would be considered equal to the String value by the == operator,
but the two String objects would not be equal to each other. For Example:

1 new String("a") =="a" and "a" == new String("a") are both true.
1 new String("a") ==new String("a") is false.

NOTE 4 Comparison of Strings uses a simple equality test on sequences of code unit values. There is no attempt to
use the more complex, semantically oriented definitions of character or string equality and collating order defined in the
Unicode specification. Therefore Strings values that are canonically equal according to the Unicode standard could test as
unequal. In effect this algorithm assumes that both Strings are already in normalised form.

11.9.4 The Strict Equals Operator (===
The production EqualityExpression : EqualityExpressior== RelationalExpressiois evaluated as follows:

Let Iref be the result of evaluatingqualityExpression

Let Ival be GetValudfef).

Let rref be the result of evaluiig RelationalExpression

Let rval be GetValue(ref).

Return the result of performing the strict equality comparis@i === Ival. (See 11.9.6)

aRrLODdE

11.9.5 The Strict Does-not-equal Operator (!==)
The production EqualityExpression : EqualityExpressiot== RdationalExpressions evaluated as follows:

1. Letlref be the result of evaluatingqualityExpression

© Ecma International 2011 81

coorwn

ecmad

Let lval be GetValudfef).

Let rref be the result of evaluatingelationalExpression

Let rval be GetValuesfef).

Letr be the result of performing striequality comparisomval === lval. (See 11.9.6)
If r istrue, returnfalse. Otherwise, returtrue.

11.9.6 The Strict Equality Comparison Algorithm

The comparison x ===y, where x and y are values, produces true or false. Such a comparison is performed
as follows:

1. If Type(x) is different from Typey), returnfalse.

2. If Type(x) is Undefined, returitrue.

3. If Type(x) is Null, returntrue.

4. If Type(x) is Number, then

a. If xis NaN, returnfalse.
b. If yis NaN, returnfalse.
c. If xis the samé&Numbervalue asy, returntrue.
d. If xis+0andyis-O0, returntrue.
e. If xis-0andyis +0, returntrue.
f. Returnfalse
5. If Type(x) is String, then returtrue if x andy are exactly the same sequence of characters (same length and
same characters in corresponding positions); etlss, returnfalse.
6. If Type(x) is Boolean, returitrue if x andy are bothtrue or bothfalse; otherwise, returffialse.
7. Returntrue if x andy refer to the same object. Otherwise, rettalse.
NOTE This algorithm differs from the SameValue Algorithm (9.12) in its treatment of signed zeroes and NaNs.

11.10 Binary Bitwise Operators

Syntax

BitwiseANDEXxpression

EqualityExpression
BitwiseANDEXxpressio& EqualityExpression

BitwiseANDEXxpressionNoln

EqualityExpressionNoln
BitwiseANDExpressionNol& EqualityExpessionNoln

Bitwise XORExpression

BitwiseANDEXxpression
Bitwise XORExpressioh BitwiseANDEXxpression

BitwiseXORExpressionNotn

BitwiseANDExpressionNoln
BitwiseXORExpressionNomh BitwiseANDExpressionNolIn

BitwiseOREXxpression

BitwiseXOREXxpression
BitwiseOFExpressior] BitwiseXORExpression

BitwiseORExpressionNotn

Bitwise XORExpressionNoln
BitwiseORExpressionNoln Bitwise XORExpressionNoln

Semantics

The production A: A @ B, where @ is one of the bitwise operators in the productions above, is evaluated as
follows:

82

© Ecma International 2011

secma

Let Iref be the result of evaluating.

Let lval be GetValudfef).

Let rref be the result of evaluating.

Let rval be GetValuefref).

Let Inumbe Tolnt32(val).

Let rnumbe Tolnt32¢val).

Return the result of applying the bitwise operator @ntom andrnum. The result is a signed 32 bit integer.

NoghswbdE

11.11 Binary Logical Operators

Syntax

LogicalANDExpression
BitwiseORExpression
LogicalANDEXxpressio&.& BitwiseOREXxpression

LogicalANDExpressionNoln
BitwiseORExpressionNoln
LogicalANDEXxpressionNol&& BitwiseORExpressionNoln

LogicalORExpression
LogicalANDExpression
LogicalORExpressiof] LogicalANDExpression

LogicalORExpressionNoln
LogicalANDExpressionNoln
LogicalORExpressionNolff LogicalANDExpressionNoln

Semantics

The production Logical ANDEXxpressin : LogicalANDEXxpressio&& BitwiseOREXxpressiois evaluated as follows:

Let Iref be the result of evaluatinigogical ANDEXpression
Let Ilval be GetValudfef).

If ToBoolean(val) is false, returnlval.

Let rref be the result of evaluatingitwiseORExpregen.
Return GetValuetef).

agrwNE

The production LogicalORExpression LogicalORExpressiof] LogicalANDExpressiois evaluated as follows:

Let Iref be the result of evaluatingogical ORExpression
Let lval be GetValudgef).

If ToBoolean(val) is true, returnlval.

Let rref be the result of evaluatinigogical ANDEXpression
Return GetValuetef).

gRrwNE

The LogicalANDExpressionNoland LogicalORExpressionNolproductions are evaluated in the same manner
as the LogicalANDExpression and LogicalORExpression productions except that the contained
LogicalANDExpressionNo|rBitwiseORExpressionNoland LogicalORExpressionNolare evaluated instead of the
contained LogicalANDExpressiomBitwiseORExpressioand LogicalORExpressigrrespectively.

NOTE The value produced by a &&or || operator is not necessarily of type Boolean. The value produced will always
be the value of one of the two operand expressions.

© Ecma International 2011 83

secma

11.12 Conditional Operator (? :)

Syntax

ConditionalExpression
Logical ORExpression
LogicalORExpressiorn? AssignmentExpre&s : AssignmentExpression

ConditionalExpressionNoln
LogicalORExpressionNoln
LogicalORExpressionNolr? AssignmentExpressianAssignmentExpressionNoln

Semantics

The production ConditionalExpression LogicalORExpressiof? AssignmentExpressianAssignmetExpressioris
evaluated as follows:

1. Letlref be the result of evaluatingogical ORExpression

2. If ToBoolean(GetValud(ef)) is true, then
a. LettrueRefbe the result of evaluatintpe first AssignmentExpression

b. Return GetValudfueRej.

3. Else
a. LetfalseRebethe result of evaluatinthe secondAssignmentExpression
b. Return GetValudéalseRe).

The ConditionalExpressionNolrproduction is evaluated in the same manner as the ConditionalExpression
production except that the contained LogicalORExpressionNojn AssignimmentExpression and
AssignmentExpressionNoln are evaluated instead of the contained LogicalORExpressign first
AssignmentExpressi@and second AssignmentExpressiprespectively.

NOTE The grammar for a ConditionalExpression in ECMAScript is a little bit different from that in C and Java, which
each allow the second subexpression to be an Expression but restrict the third expression to be a ConditionalExpression.
The motivation for this difference in ECMAScript is to allow an assignment expression to be governed by either arm of a
conditional and to eliminate the confusing and fairly useless case of a comma expression as the centre expression.

11.13 Assignment Operators

Syntax

AssignmentExpressian
ConditionalExpression
LeftHandSideExpression AssignmentExmssion
LeftHandSideExpression AssignmentOperator AssignmentExpression

AssignmentExpressionNoin
ConditionalExpressionNoln
LeftHandSideExpression AssignmentExpressionNoln
LeftHandSideExpression AssignmentOperator AssignmentExpressionNoln

AssignmentOpetar : one of
*= /= %= += -= <<= >>= >>>= &= A= |=

Semantics

The AssignmentExpressionNolproductions are evaluated in the same manner as the AssignmentExpression
productions except that the contained ConditionalExpressionNoland AssignmentExpressionNohare evaluated
instead of the contained ConditionalExpressiomand AssignmentExpressiprespectively.

84 © Ecma International 2011

secma

11.13.1 Simple Assignment (=)
The production AssignmentExpressiarLeftHandSideExpression AssignmentExpressias evaluated as follows:

Let Iref be the result of evaluatingeftHandSideExpression
Let rref be the result of evaluatingssignmentExpression
Let rval be GetValuefref).
Throw aSyntaxError exception if the following conditions are all true:
i Type(ref) is Reference isrue
i IsStrictReferene(ref) is true
i Type(GetBasd(ef)) is Environment Record
i GetReferencedNamkéf) is either"eval" or "arguments
Call PutValuelref, rval).
Returnrval.

PoNPE

5.
6.

NOTE When an assignment occurs within strict mode code, its LeftHandSidemust not evaluate to an unresolvable
reference. If it does a ReferenceError exception is thrown upon assignment. The LeftHandSidealso may not be a
reference to a data property with the attribute value {[[Writable]]: false}, to an accessor property with the attribute value
{[[S4]]:undefined}, nor to a non-existent property of an object whose [[Extensible]] internal property has the value false. In
these cases a TypeError exception is thrown.

11.13.2 Compound Assignment (op=)

The production AssignmentExpressianLeftHandSideExpreson AssignmentOperatoAssignmentExpressipnvhere
AssignmentOperatds @= and @ represents one of the operators indicated above, is evaluated as follows:

Let Iref be the result of evaluatinigeftHandSideExpression
Let lval be GetValudfef).
Let rref be the result of evaluatingssignmentExpression
Let rval be GetValuefref).
Letr be the result of applying operator @It@l andrval.
Throw aSyntaxError exception if the following conditions are all true:
i Type(ref) is Reference isrue
i IsStrictRefeence(ref) is true
i Type(GetBasd(ef)) is Environment Record
i GetReferencedName(lref) &ther"eval" or "arguments
7. Call PutValuelref, r).
8. Returnr.

ook wNE

NOTE See NOTE 11.13.1.
11.14 Comma Operator (,)

Syntax

Expression
AssignmentExpression
Expression AssignmentExpression

ExpressionNoln

AssignmentExpressionNoln
ExpressionNoln AssignmentExpressionNoln

Semantics

The production Expression Expression AssignmentExpressias evaluated as follows:

1. Letlref be the result of evaluatingxpression
2. Call GetValue(ref).

© Ecma International 2011 85

secma

3. Letrref be the result of evaluatingssignmentExpression
4. Return GetValuatef).

The ExpressionNolrproduction is evaluated in the same manner as the Expressionproduction except that the
contained ExpressionNolrand AssignmentExpressibioin are evaluated instead of the contained Expressiornand
AssignmentExpressiprespectively.

NOTE GetValue must be called even though its value is not used because it may have observable side-effects.

12 Statements

Syntax

Statement
Block
VariableStaterant
EmptyStatement
ExpressionStatement
IfStatement
IterationStatement
ContinueStatement
BreakStatement
ReturnStatement
WithStatement
LabelledStatement
SwitchStatement
ThrowStatement
TryStatement
DebuggerStatement

Semantics

A Statementan be part of a LabdledStatementwhich itself can be part of a LabelledStatementind so on. The

|l abels introduced this way are collectively referred to
of individual statements. A LabelledStatemeritas no semantic meaning other than the introduction of a label to

a label set. The label set of an IterationStatemenbr a SwitchStatemeninitially contains the single element

empty. The label set of any other statement is initially empty.

The result of evaluating a Statenentis always a Completion value.

NOTE Several widely used implementations of ECMAScript are known to support the use of FunctionDeclaratioras a
StatementHowever there are significant and irreconcilable variations among the implementations in the semantics applied
to such FunctionDeclarationsBecause of these irreconcilable differences, the use of a FunctionDeclarationas a Statement
results in code that is not reliably portable among implementations. It is recommended that ECMAScript implementations
either disallow this usage of FunctionDeclarationor issue a warning when such a usage is encountered. Future editions of
ECMAScript may define alternative portable means for declaring functions in a Statementontext.

12.1 Block

Syntax
Block:
{ Statementlsity }

StatementList
Statement
StatementList Statement

86 © Ecma International 2011

secma

Semantics

The production Block: { } is evaluated as follows:

1. Return formal, empty, empty).

The production Block: { StatementLis} is evaluated as follows:

1. Return the result of evaluatirgtatemetiist.

The production StatementList Statementis evaluated as follows:

1. Letsbe the result of evaluatingtatement

2. If an exception was thrown, returth(ow, V, empty) whereV is the exception. (Execution now proceeds as
if no exception were thrown.)

3. Reurns.

The production StatementList StatementList Statemegtevaluated as follows:

1. Letslbe the result of evaluatingtatementList

2. |If slis an abrupt completion, retust.

3. Letsbe the result of evaluatingtatement

4. If an exception was thrown, natn (throw, V, empty) whereV is the exception. (Execution now proceeds as

if no exception were thrown.)

5. If s.value isempty, letV = sl.value, otherwise le¥ = s.value.

6. Return &.type,V, s.target).

NOTE Steps 5 and 6 of the above algoritm ensure that the value of a StatementLists the value of the last value

producing Statement in the StatementList For example, the following calls to the eval function all return the value 1:
eval("1;;:5;")
eval('L;{}")

eval("1;var a;")
12.2 Variable Statement

Syntax

VariableStatement
var VariableDeclarationList

VariableDeclarationList
VariableDeclaration
VariableDeclarationList VariableDeclaration

VariableDeclarationListNoln
VariableDeclarationNoln
VariableDeclarationListNoln VariableDeclarationNoln

VariableDeclaration:
Identifier Initialiser,p

VariableDeclarationNoln
Identifier InitialiserNolny;

Initialiser :
= AssignmentExpression

InitialiserNoln:
= AssignmentExpressionNoln

© Ecma International 2011 87

secma

A variable statement declares variables that are created as defined in 10.5. Variables are initialised to
undefined when created. A variable with an Initialiser is assigned the value of its AssignmentExpressiomhen
the VariableStatemeris executed, not when the variable is created.

Semantics

The production VariableStatementvar VariableDeclarationList is evaluated as follows:

1. EvaluateVariableDeclarationList
2. Return formal, empty, empty).

The production VariableDeclarationList VariableDeclarationis evaluated as follows:
1. EvaluateVariableDeclaration
The production VariableDeclarationList: VariableDeclarationList VariableDeclarationis evaluated as follows:

1. EvaluateVariableDeclarationList
2. EvaluateVariableDeclaration

The production VariableDeclaration: Identifier is evaluated as follows:

1. Return aStringvalue containig the same sequence of characters as indéetifier.
The production VariableDeclaration: Identifier Initialiseris evaluated as follows:

Let Ihs be the result of evaluatiniglentifier as described in 11.1.2.

Let rhsbe the result of evaluatinigitiali ser.

Let valuebe GetValueths).

Call PutValuelhs, value.
Return aStringvalue containing the same sequence of characters as iddhgfier.

gD E

NOTE The String value of a VariableDeclarationis used in the evaluation of for-in statements (12.6.4).

If a VariableDeclarationis nested within a with statement and the Identifier in the VariableDeclarationis the

same as a property name of the binding object of the wit
will assign value to the property instead of to the VariableEnvironment binding of the Identifier.

The production Initialiser : = AssignmentExpressiaa evaluated as follows:

1. Return the result of evaluatingssignmentExpression

The VariableDeclarationListNoln VariableDeclarationNolnand InitialiserNoln productions are evaluated in the
same manner as the VariableDeclarationList VariableDeclarationand Initialiser productions except that the
contained VariableDeclarationListNoln VariableDeclarationNoln InitialiserNoln and AssignmentExpressidioin
are evaluated instead of the contained VariableDeclarationList VariableDeclaration Initialiser and
AssignmentExpressiprespectively.

12.2.1 Strict Mode Restrictions

Itis a SyntaxError if a VariableDeclarationor VariableDeclarationNolroccurs within strict code and its Identifier
is either "eval" or "arguments"

12.3 Empty Statement

Syntax
EmptyStatement

88 © Ecma International 2011

secma

Semantics

The production EmptyStatement; is evaluated as follows:

1. Return(normal, empty, empty).
12.4 Expression Statement

Syntax
ExpressbnStatement
[lookahead T {{, function }] Expression

NOTE An ExpressionStatemenannot start with an opening curly brace because that might make it ambiguous with a
Block Also, an ExpressionStatemenannot start with the function ~ keyword because that might make it ambiguous with a
FunctionDeclaration

Semantics
The production ExpressionStatementlookahead T {{, function }] Expression is evaluated as follows:

1. LetexprRefbe the result of evaluatingxpression
2. Return formal, GetValueéxprRef, empty).

12.5 Theif Statement

Syntax

IfStatement
if (Expression) Statementelse Statement
if (Expression) Statement

Each else for which the choice of associated if is ambiguous shall be associated with the nearest possible
if that would otherwise have no corresponding else .

Semantics

The production IfStatement if (Expression) Statemengtlse Statemenis evaluated as follows:

1. LetexprRefbe the result of evaluatingxpression
2. If ToBoolean(GetValuedxprReJ) is true, then

a. Return the result of evaluatjrthe firstStatement
3. Else,

a. Return the result of evaluating the sec@tdtement

The production IfStatement if (Expressior) Statements evaluated as follows:
1. LetexprRefbe the result of evaluatingxpression

2. If ToBoolean(GetValuedxprReJ) is false, return formal, empty, empty).
3. Return the result of evaluatirgtatement

© Ecma International 2011 89

secma

12.6 lteration Statements

Syntax

IterationStatement
do Statementwhile (Expression;
while (Expressior) Statement
for (ExpressionNolg,; Expressiog,; Expressiog,) Staement
for (var VariableDeclarationListNoln Expressiog, ; Expressiog,) Statement
for (LeftHandSideExpressian Expressior) Statement
for (var VariableDeclarationNolrin Expressior) Statement

12.6.1 The do-while Statement
The production do Statenentwhile (Expression; is evaluated as follows:

1. LetV=-empty.
2. Letiterating betrue.
3. Repeat, whildteratingis true
a. Letstmtbe the result of evaluatingtatement
b. If stmtvalue is noempty, letV = stmtvalue
c. If stmttype is notcontinue || stmttarget is not in the current label set, then
i If stmttype isbreak andstmttarget is in the current label set, retuno(mal, V, empty).
ii. If stmtis an abrupt completion, retugtmt
d. LetexprRefbe the result of evaluatingxpression
e. If ToBoolean(GetVale(exprRe)) is false, setiterating to false.
4. Return formal, V, empty);

12.6.2 The while Statement
The production IterationStatementwhile (Expressior) Statements evaluated as follows:

1. LetV =empty.

2. Repeat
a. LetexprRefbe the result of evaluatingxpression.
b. If ToBoolean(GetValuedxprReJ) is false, return ormal, V, empty).
c. Letstmtbe the result of evaluatingtatement
d. If stmtvalue is noempty, letV = stmtvalue.
e. If stmttype is notcontinue || stmttarget is not in the current label set, then

i If stmttype isbreak andstmttarget is in the current label set, then
1. Return formal, V, empty).
ii. If stmtis an abrupt completion, retugtmt

12.6.3 The for Statement

The production
IterationStatementfor (ExpressionNolg, ; Expressiog, ; Expressiog) Statement
is evaluated as follows:

1. If ExpressionNolns present, then.
a. LetexprRefbe the result of evaluatingxpressionNoln
b. Call GetValueéxprRef. (This value is not usebut the call may have sideffects)
2. LetV=empty.
3. Repeat
a. |If the first Expressions present, then
i Let testExprRebe the result of evaluating the fifBkpressia.
ii. If ToBooleanGetValuefestExprRe)) is false, return formal, V, empty).
b. Letstmtbe the result of evaluatingtatement

90 © Ecma International 2011

secma

If stmtvalue is notempty, letV = stnt.value
If stmttype isbreak andstmttarget is in the current label set, retumomal, V, empty).
e. If stmttype is notcontinue || stmttarget is not in the current label set, then
i If stmtis an abrupt completion, retusimt
f. If the secondExpressionis present, then
i Let incExprRefoe the result of evaluating the secdexbressio.
ii. Call GetValueincExprReJ. (This value is not used.)

oo

The production
IterationStatement for (var VariableDeclarationListNoln Expressiog,; Expressiog,) Statemen
is evaluated as follows:

1. EvaluateVariableDeclarationListNoln
2. LetV =empty.
3. Repeat
a. If the first Expressions present, then

i Let testExprRebe the result of evaluating the fifSkpression

ii. If ToBooleanGetValuefestExprRef) is false, then returniformal, V, empty).
Let stmtbe the result of evaluatingtatement
If stmtvalue is noempty, let V =stmtvalue.
If stmttype isbreak andstmttarget is in the current label set, retunofmal, V, empty).
If stmttype is notcontinue || stmttarget is noin the current label set, then

i If stmtis an abrupt completion, retugimt
If the secondExpressions present, then.

i Let incExprRefoe the result of evaluating the secdexpression

ii. Call GetValuei{ncExprReJ. (This value is not used.)

®ooo

—h

12.6.4 The for -i n Statement

The production IterationStatement for (LeftHandSideExpressiom Expression) Statemenis evaluated as
follows:

Let exprRefbe the result of evaluating thexpression
Let experValuebe GetValueg¢xprRe.
If experValuds null or undefined, return fiormal, empty, empty).
Let obj be ToObjectéxperValug.
LetV = empty.
Repeat
a. LetP be the name of the next propertyalfj whose [[Enumerable]] attribute tsue. If there is no

such property, returmprmal, V, empty).
Let IhsRefbe the result bevaluating the_eftHandSideExpressiohit may be evaluated repeatedly).
Call PutValuelhsRef P).
Let stmtbe the result of evaluatin§tatement
If stmtvalue is notempty, letV = stmtvalue.
If stmttype isbreak andstmttarget is in the current l&b set, returnrformal, V, empty).
If stmttype is notcontinue || stmttarget is not in the current label set, then

i If stmtis an abrupt completion, retusimt

ocukwnE

Q"0 oo0oC

The production
IterationStatementfor (var VariableDeclarationNolrin Expression) Staement
is evaluated as follows:

Let varNamebe the result of evaluatingariableDeclarationNoln
Let exprRefbe the result of evaluating thexpression

Let experValuebe GetValueéxprRef.

If experValueds null or undefined, return formal, empty, empty).
Let obj be ToObjectéxperValug.

LetV = empty.

oukwhE

© Ecma International 2011 91

secma

7. Repeat
a. LetP be the name of the next propertyalij whose [[Enumerable]] attribute tsue. If there is no

such property, returmprmal, V, empty).
Let varRefbe the result of evaluatingarNameas if it were an Identifier Reference (11.1.2); it may
be evaluated repeatedly.
Call PutValueyarRef P).
Let stmtbe the result of evaluatingtatement
If stmtvalue is noempty, letV = stmtvalue.
If stmttype isbreak andstmttarget is in the current labeltse@eturn formal, V, empty).
If stmttype is notcontinue || stmttarget is not in the current label set, then

i If stmtis an abrupt completion, retustmt

o

@~eooo

The mechanics and order of enumerating the properties (step 6.a in the first algorithm, step 7.a in the second)
is not specified. Properties of the object being enumerated may be deleted during enumeration. If a property
that has not yet been visited during enumeration is deleted, then it will not be visited. If new properties are
added to the object being enumerated during enumeration, the newly added properties are not guaranteed to
be visited in the active enumeration. A property name must not be visited more than once in any enumeration.

Enumerating the properties of an object includes enumerating properties of its prototype, and the prototype of

the prototype, and so on, recursively; but a property c
because some previous object in the prototype chain has a property with the same name. The values of

[[Enumerable]] attributes are not considered when determining if a property of a prototype object is shadowed

by a previous object on the prototype chain.

NOTE See NOTE 11.13.1.
12.7 The continue Statement

Syntax

ContinueStatement
continue ;

continue [no LineTerminatothere] ldentifier;

Semantics

A program is considered syntactically incorrect if either of the following is true:

I The program contains a continue statement without the optional Identifier, which is not
nested, directly or indirectly (but not crossing function boundaries), within an
IterationStatement

1 The program contains a continue statement with the optional ldentifier, where Identifier
does not appear in the label set of an enclosing (but not crossing function boundaries)
IterationStatememn

A ContinueStatementithout an Identifier is evaluated as follows:
1. Return €ontinue, empty, empty).

A ContinueStatementith the optional Identifier is evaluated as follows:

1. Return ¢€ontinue, empty, ldentifier).

92 © Ecma International 2011

secma

12.8 The break Statement

Syntax

BreakStatment
break ;

break [no LineTerminatorhere] Identifier;

Semantics
A program is considered syntactically incorrect if either of the following is true:
1 The program contains a break statement without the optional Identifier, which is not

nested, directly or indirectly (but not crossing function boundaries), within an
IterationStatemenbr a SwitchStatement

1 The program contains a break statement with the optional Identifier, where Identifier does
not appear in the label set of an enclosing (but not crossing function boundaries) Statement

A BreakStatememwithout an Identifier is evaluated as follows:
1. Return preak, empty, empty).
A BreakStatemenith an Identifier is evaluated as follows:

1. Return preak, empty, Identifier).
12.9 Thereturn Statement

Syntax

ReturnStatement
return ;

r eturn [no LineTerminatorhere] Expression

Semantics

An ECMAScript program is considered syntactically incorrect if it contains a return statement that is not
within a FunctionBody A return statement causes a function to cease execution and return a value to the
caller. If Expressionis omitted, the return value is undefined. Otherwise, the return value is the value of
Expression

A ReturnStatemeris evaluated as follows:
1. If the Expressioris not present, returrréturn, undefined, empty).

2. LetexprRefbe the result of evaluatingxpression
3. Return eturn, GetValueéxprRef, empty).

12.10 The with Statement

Syntax
WithStatement
with (Expressior) Statement

The with statement adds an object environment record for a computed object to the lexical environment of
the current execution context. It then executes a statement using this augmented lexical environment. Finally,
it restores the original lexical environment.

© Ecma International 2011 93

secma

Semantics

The production WithStatementwith (Expressior) Satemenis evaluated as follows:

1. Letvalbe the result of evaluatingxpression
2. Letobjbe ToObject(GetValuegl)).
3. LetoldEnvbe the running execution contextods Lexical Envir
4. LetnewEnvbe the result of calling NewObjectEnvironment passbgandoldEnvas the arguments
5. Set theprovideThisflag of newEnwvto true.
6. Set the running executionnewBnnt ext éds Lexical Environmen
7. Let C be the result of evaluatin§tatementut if an exception is thrown during the evaluation, Gbe
(throw, V, empty), whereV is the exception. (Execution now proceeds as if no exception were thrown.)
8. Set the running executionoldEnwmtextds Lexical Environme
9. ReturnC.
NOTE No matter how control leaves the embedded Statement whether normally or by some form of abrupt

completion or exception, the LexicalEnvironment is always restored to its former state.

12.10.1 Strict Mode Restrictions

Strict mode code may not include a WithStatementThe occurrence of a WithStatemenin such a context is
treated as a SyntaxError.

12.11 The switch Statement

Syntax

SwitchStatement
switch (Expressior) CaseBlock

CaseBlock
{ CaseClausgs; }
{ CaseClausgg; DefaultClause CaseClausgs

CaseClauses
CaseClause
CaseClauses CaseClause

CaseClause
case Expression Statemetlist,y

DefaultClause
default : StatementLigf;

Semantics

The production SwitchStatementswitch (Expressior) CaseBlocks evaluated as follows:

Let exprRetbe the result of evaluatingxpression

Let R be the result of evaluatinGaseBlock passingt GetValuegxprRef as a parameter.
If R.type isbreak andR.target is in the current label set, retunofmal, R.value,empty).
ReturnR.

PoONE

The production CaseBlock { CaseClausesg: } is given an input parameter, input, and is evaluated as follows:

LetV = empty.
Let A be the list ofCaseClausé&ems in source text order.
Let searchingbetrue.
Repeat, whilesearchings true
a. LetC be the nexCaseClausén A. If there is no suclaseClausereturn formal, V, empty).

PwbNE

94 © Ecma International 2011

secma

b. LetclauseSelectdoe the result oévaluatingC.
c. If inputis equal teclauseSelectoas defined by the== operator, then
i. Setsearchingto false
ii. If C has aStatementListthen
1. EvaluateCo StatementLisand letR be the result.
2. If Ris an abrupt completion, then retud®n
3. LetV=Rvalue
5. Repeat
a. LetC be the nexCaseClausén A. If there is no suclaseClausgreturn(normal, V, empty).
b. If Chas aStatementListthen
i. EvaluateCd StatementLisand letR be the result.
ii. If Rvalue is noempty, then letvV = R.value.
iii. If Ris an abrupt coniption, then returrfR.type,V, R.target).

The production CaseBlock { CaseClauseg: DefaultClause CaseClausgs} is given an input parameter, input,
and is evaluated as follows:

LetV = empty.
Let A be the list ofCaseClausé&ems in the firsCaseClaises in source text order.
Let B be the list ofCaseClausé&ems in the secon@aseClausesn source text order.
Letfoundbefalse
Repeat lettingC be in order eacaseClausén A
a. If foundis false, then
i. Let clauseSelectdpe the result of evaluating.
ii. If inputis equal teclauseSelectoas defined by the== operator, then séoundto true.
b. If foundistrue, then
i. If C has aStatementListthen
1. EvaluateCd StatementLisand letR be the result.
2. If Rvalue is noempty, then letvV = R.value.
3. Ris anabrupt completion, then retu(R.type,V, R.target).
6. LetfoundinBbefalse
7. If foundis false then
a. Repeat, whildoundInBis falseand all elements d have not been processed
i. Let C be the nexCaseClausén B.
ii. Let clauseSelectdpe the result of evaatingC.
iii. If inputis equal taclauseSelectoas defined by the== operator, then
1. SetfoundInBto true.
2. If Chas aStatementListthen
a EvaluateCo StatementLisand letR be the result.
b If Rvalue is noempty, then letV = R.value.
¢ Ris an abrupt comptmn, then returrfR.type,V, R.target).
8. If foundInBis false and theDefaultClausehas aStatementListhen
a. Evaluatethdd e f a ul t SdtemantlishbidsletR be the result.
b. If Rvalue is noempty, then letV = R.value.
c. If Ris an abrupt completionhén returnR.type,V, R.target).
9. Repeat (Note that if step 7.a.i has been performed this loop does not start at the begBing of
a. LetC be the nexCaseClausén B. If there is no suclaseClausereturn formal, V, empty).
b. If Chas aStatementListhen
i. EvaluateCd StatementLisand letR be the result.
ii. If Rvalue is noempty, then letvV = Rvalue.
iii. If Ris an abrupt completion, then retuRitype,V, R.target).

agrwbNE

The production CaseClause case Expression StatementLigf; is evaluated as follows:

1. LetexprRefbe the result of evaluatingxpression
2. Return GetValuefxprReJ.

NOTE Evaluating CaseClausaloes not execute the associated StatementListlt simply evaluates the Expressionand
returns the value, which the CaseBloclalgorithm uses to determine which StatementListo start executing.

© Ecma International 2011 95

secma

12.12 Labelled Statements

Syntax

LabelledStatement
Identifier: Statement

Semantics

A Statementnay be prefixed by a label. Labelled statements are only used in conjunction with labelled break
and continue statements. ECMAScript has no goto statement.

An ECMAScript program is considered syntactically incorrect if it contains a LabelledStatemerhat is enclosed
by a LabelledStatementith the same Identifier as label. This does not apply to labels appearing within the body
of a FunctionDeclaratiornthat is nested, directly or indirectly, within a labelled statement.

The production Identifier : Statemenis evaluated by adding Identifier to the label set of Statementand then
evaluating Statementlf the LabelledStatmentitself has a non-empty label set, these labels are also added to
the label set of Statemenbefore evaluating it. If the result of evaluating Statements (break, V, L) where L is
equal to Identifier, the production results in (normal, V, empty).

Prior to the evaluation of a LabelledStatementhe contained Statemenis regarded as possessing an empty
label set, unless it is an IterationStatemenbr a SwitchStatementn which case it is regarded as possessing a
label set consisting of the single element, empty.

12.13 The throw Statement

Syntax

ThrowStatement
throw [no LineTerminatorhere] Expression

Semantics
The production ThrowStatementthrow [no LineTerminatomere] Expressior is evaluated as follows:

1. LetexprRefbe the result of evaluatingxpression
2. Return throw, GetValueéxprReJf, empty).

12.14 Thetry Statement

Syntax

TryStatement
try Block Catch
try Block Finally
try Block Catch Finally

Catch:
catch (Identifier) Block

Finally :
finally Block

The try statement encloses a block of code in which an exceptional condition can occur, such as a runtime

error or a throw statement. The catch clause provides the exception-handling code. When a catch clause
catches an exception, its Identifieris bound to that exception.

96 © Ecma International 2011

secma

Semantics

The production TryStatement try Block Catchis evaluated as follows:

1. LetB be the result of evaluatinglock
2. If B.type is notthrow, returnB.
3. Return the result of evaluatingatchwith parameteB.value

The production TryStatement try BlockFinally is evaluated as follows:

1. LetB be the result of evaluatinglock
2. LetF be the result of evaluatiniginally.
3. If F.type isnormal, returnB.

4. ReturnF.

The production TryStatement try Block CatchFinally is evaluated as follows:

1. LetB be the result of evaluatinglock.
2. If B.type isthrow, then
a. LetCbe the result of evaluatin@atchwith parameteB.value
3. Else,B.type is notthrow,
a. LetCbeB.
4. LetF be the result of evaluatinginally.
5. If F.type isnormal, returnC.
6. ReturnF.

The production Catch: catch (Identifier) Blockis evaluated as follows:

1. LetC be the parameter that has been passed to this production.
2. LetoldEnvbe t he running execution contextoés Lexical Env
3. LetcatchEnvbe the result of calling NewDeclarativeEnvironment passiddenvas the argunm.
4. Call the CreateMutableBinding concrete method catchEnvpassing theldentifier String value as the
argument.
5. Call the SetMutableBinding concrete methodcatchEnvpassing thddentifier, C, andfalse as arguments.
Note that the last argument is inaterial in this situation.
6. Set the running executioncatcheEmdu ext 6s Lexical Enviror
7. LetB be the result of evaluatinglock.
8. Set the running executionoldgtamt ext 6 s Lexical Enviror
9. ReturnB.
NOTE No matter how control leaves the Blockthe LexicalEnvironment is always restored to its former state.
The production Finally : finally Blockis evaluated as follows:

1. Return the result of evaluatirglock

12.14.1 Strict Mode Restrictions

It is a SyntaxError if a TryStatementvith a Catch occurs within strict code and the Identifier of the Catch
production is either "eval" or "arguments"”

12.15 The debugger statement
Syntax

DebuggerStatement
debugger ;

© Ecma International 2011 97

secma

Semantics

Evaluating the DebuggerStatememgroduction may allow an implementation to cause a breakpoint when run
under a debugger. If a debugger is not present or active this statement has no observable effect.

The production DebuggerStatemenidebugger ; is evaluated as follows:

1. If an implementation defined debugging facility is available anabéed, then
a. Perform an implementation defined debugging action.
b. Letresultbe an implementation defined Completion value.

2. Else
a. Letresultbe (hormal, empty, empty).

3. Returnresult

13 Function Definition

Syntax

FunctionDeclaration
function Identifier(FormalParameterList;) { FunctionBody}

FunctionExpression
function Identifier,, (FormalParameterLisf;) { FunctionBody}

FormalParameterList
Identifier
FormalParameterList ldentifier

FunctionBody:.
SourceElemengs

Semantics

The production
FunctionDeclaration function Identifier (FormalParameterLisf,) { FunctionBody}
is instantiated as follows during Declaration Binding instantiation (10.5):

1. Return the result of creating a new Function object as specified in 13.2 with parametéfiedspmc
FormalParameterList:, and body specified bjFunctionBody Pass in the VariableEnvironment of the running
execution context as ttgcope Pass irtrue as theStrict flag if the FunctionDeclarationis contained in strict code
or if its FunctionBog is strict code.

The production
FunctionExpressionfunction (FormalParameterLis:) { FunctionBody}
is evaluated as follows:

1. Return the result of creating a new Function object as specified in 13.2 with parameters specified by
FormalParameterlst,; and body specified byunctionBody Pass in the LexicalEnvironment of the running
execution context as tt&cope Pass irtrue as theStrict flag if the FunctionExpressioiis contained in strict code or
if its FunctionBodyis strict code.

The production
FunctionExpression function Identifier (FormalParameterList:) { FunctionBody}
is evaluated as follows:

1. LetfuncEnvbe the result of <calling NewDecl arativeEnvironmer
Environment as the argument

2. LetenvRedef u n c Emvivobnsent record.

3. Call the CreatelmmutableBinding concrete methodrmfRe@assing thé&tringvalue ofldentifier as the argument.

98 © Ecma International 2011

secma

4. Let closure be the result of creating a new Function object as specified in 13.2 with paraspseified by
FormalParameterLisf: and body specified bifunctionBody Pass infuncEnvas theScope Pass intrue as the
Strictflag if the FunctionExpressiois contained in strict code or if iEBunctionBodyis strict code.

5. Call the InitializelmmutableBiding concrete method envRe@assing thé&tring value ofldentifier andclosureas
the arguments.

6. Returnclosure

NOTE The Identifier in a FunctionExpressiortan be referenced from inside the FunctionExpression'sunctionBodyto
allow the function to call itself recursively. However, unlike in a FunctionDeclaration the Identifier in a FunctionExpression
cannot be referenced from and does not affect the scope enclosing the FunctionExpression

The production FunctionBody. SourceElemengs is evaluated as follows:

1. The code of thiunctionBodyis strict mode code if it is part of RunctionDeclarationor FunctionExpressiotthat
is contained in strict mode code or if the Directive Prologue (14.1) &dtgceElementsontains a Use Strict
Directive or f any of the conditions in 10.1.1 apply. If the code of thismctionBodyis strict mode code,
SourceElementis evaluated in the following steps as strict mode code. OtherBisgceElements evaluated in
the following steps as nestrict mode code.

If SourceElements present return the result of evaluatBmurceElements

Else returniformal, undefined, empty).

wn

13.1 Strict Mode Restrictions

It is a SyntaxError if any Identifier value occurs more than once within a FormalParameterLisbf a strict mode
FunctionDeclarationor FunctionExpression

Itis a SyntaxError if the Identifier "eval® or the Identifier "arguments" occurs within a FormalParameterList
of a strict mode FunctionDeclarationor FunctionExpression

It is a SyntaxError if the Identifier "e val" or the Identifier "arguments" occurs as the Identifier of a strict
mode FunctionDeclarationor FunctionExpression

13.2 Creating Function Objects

Given an optional parameter list specified by FormalParameterLista body specified by FunctionBody a Lexical
Environment specified by Scopeand a Boolean flag Strict, a Function object is constructed as follows:

Create a new native ECMAScript object andHdte that object.

Set all the internal methods, except for [[Get]]Fadsdescribedn 8.12.

Set he [[Class]] internal property & to "Function”

Set the [[Prototype]] internal property Bfto the standard buiih Function prototype object as specified in 15.3.3.1.

Set the [[Get]] internal property &fas described in 15.3.5.4.

Set the [[Call]] hternal property oF as described in 13.2.1.

Set the [[Construct]] internal property Bfas described in 13.2.2.

Set the [[HaslInstance]] internal propertyroés described in 15.3.5.3.

Set the [[Scope]] internal property Bfto the value oScope

0. Let namesbe a List containing, in left to right textual order, tB&rings corresponding to the identifiers of

FormalParameterListlf no parameters are specified, fetmesethe empty list.

11. Set the [[FormalParameters]] internal property-ad names

12. Setthe [[Code]] internal property df to FunctionBody

13. Set the [[Extensible]] internal property Bfto true.

14. Letlen be the number of formal parameters specifietBdrmalParameterListlf no parameters are specified, lie
be 0.

15. Call the [[DefineOwnPropty]] internal method of with arguments' length ", Property Descriptor {[[Value]]:
len, [[Writable]]: false, [[Enumerable]]false [[Configurable]]:false}, andfalse

16. Let proto be the result of creating a new object as would be constructed by thestaprew Object() where

Object is the standard buiih constructor with that name.

BOONOOA~WONE

© Ecma International 2011 99

secma

17. Call the [[DefineOwnProperty]] internal method prfoto with arguments' constructor ", Property Descriptor
{[[Value]]: F, {[[Writable]]: true, [[Enumerable]]false [[Configurable]]:true}, andfalse
18. Call the [[DefineOwnProperty]] internal method & with arguments" prototype , Property Descriptor
{[[Value]]: proto, { [[Writable]]: true, [[Enumerable]]false [[Configurable]]:false}, andfalse
19. If Strictis true, then
a. Letthrowerbe the [[ThrowTypeError]] function Object (13.2.3).
b. Call the [[DefineOwnProperty]] internal method & with arguments'caller" , PropertyDescriptor
{[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]false, [[Configurable]]:false}, andfalse
c. Call the [[DefineOwnProperty]] internal method Bfwith argumentsarguments" , PropertyDescriptor
{[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]false, [[Configurable]]:false}, andfalse
20. ReturnF.

NOTE A prototype property is automatically created for every function, to allow for the possibility that the function
will be used as a constructor.

13.2.1 [[Call]]

When the [[Call]] internal method for a Function object F is called with a this value and a list of arguments, the
following steps are taken:

1. LetfuncCtxbe the result of establishing a new execution context for function code using the védise of
[[FormalParameters]] internal property, the passed argumentsatgst and thethis value as described in
10.4.3.

2. Letresultbe the result of evahting theFunctionBodythat is the value of's [[Code]] internal property. If

F does not have a [[Code]] internal property or if its value is an efAptctionBody thenresultis (normal,

undefined, empty).

Exit the execution contextncCtx restoring he previous execution context.

If resulttype isthrow then throwresultvalue.

If resulttype isreturn then returrresultvalue.

Otherwiseresulttype must benormal. Returnundefined.

oukw

13.2.2 [[Construct]]

When the [[Construct]] internal method for a Function object F is called with a possibly empty list of arguments,
the following steps are taken:

Let obj be a newly created native ECMAScript object.

Set all the internal methodd obj as specified in 8.12.

Set the [[Class]] internal property objto "Object"

Set the [[Extensible]] internal property obbj to true.

Let proto be the value of calling the [[Get]] internal propertyFofvith argument'prototype”

If Type(proto) is Object, set the [[Prototype]] internal propertyodi to proto.

If Type(proto) is not Object, set the [[Prototype]] internal propertyobf to the standard builh Object prototype

object as described in 15.2.4.

8. Letresultbe the result of calling the [[Call]] internal propertyFafprovidingobj as thethis value and providinghe
argument list passed into [[Construct]]ags

9. If Type(resul) is Object then returresult

10. Returnobj.

NogkwnhRE

13.2.3 The [[ThrowTypeError]] Function Object
The [[ThrowTypeError]] object is a unique function object that is defined once as follows:

Createa new native ECMAScript object and febe that object.

Set all the internal methods F asdescribedn 8.12.

Set the [[Class]] internal property Bfto "Function”

Set the [[Prototype]] internal property Bfto the standard builh Function prototyp object as specified in 15.3.3.1.
Set the [[Call]] internal property df as described in 13.2.1.

Set the [[Scope]] internal property Bfto the Global Environment.

ogkwNE

100 © Ecma International 2011

secma

7. Set the [[FormalParameters]] internal propertydd an empty List.

8. Set the [[Code]] iternal property of to be aFunctionBodythat unconditionally throws &ypeError exception and
performs no other action.

9. Call the [[DefineOwnProperty]] internal method Bfwith arguments length ", Property Descriptor {[[Value]]0,
[[Writable]]: false [[Enumerable]]false, [[Configurable]]:false}, andfalse

10. Set the [[Extensible]] internal property Bfto false

11. Let [[ThrowTypeError]] be~.

14 Program

Syntax

Program:
SourceElemengs

SourceElements
SourceElement
SourceElements SourceElement

SoureElement
Statement
FunctionDeclaration

Semantics

The production Program: SourceElemengs is evaluated as follows:

1. The code of thifrogramis strictmodecode if the Directive Prologue (14.1) of iurceElementsontains
a Use Strict Directive or idny of the conditions of 10.1.1 apply. If the code of thisgramis strict mode
code,SourceElements evaluated in the following steps as strict mode code. OtheiSoaseceElements
evaluated in the following steps as nstrict mode code.

If SoureElementss not present, returmfrmal, empty, empty).

Let progCxtbe a newexecutioncontext for global code as described in 10.4.1.

Let resultbe the result of evaluatinGourceElements

Exit the execution contexirogCxt

Returnresult

ook wn

NOTE The processes for initiating the evaluation of a Programand for dealing with the result of such an evaluation
are defined by an ECMAScript implementation and not by this specification.

The production SourceElementsSourceElementSourceElemeris evaluated as follows:

Let headResulbe the result oévaluatingSourceElements

If headResults an abrupt completion, retuhreadResult

Let tailResultberesult of evaluatingsourceElement

If tailResultvalue isempty, letV = headResulvalue, otherwise le¥ = tailResultvalue.
Return (ailResulttype, V, tailResulttarge)

LD E

The production SourceElementStatemenis evaluated as follows:

1. Returnthe result of evaluatintatement

The production SourceElementFunctionDeclarations evaluated as follows:

1. Return formal, empty, empty).

© Ecma International 2011 101

secma

14.1 Directive Prologues and the Use Strict Directive

A Directive Prologue is the longest sequence of ExpressionStatemergroductions occurring as the initial
SourceElemenproductions of a Programor FunctionBodyand where each ExpressionStatemein the sequence
consists entirely of a StringLiterd token followed a semicolon. The semicolon may appear explicitly or may be
inserted by automatic semicolon insertion. A Directive Prologue may be an empty sequence.

A Use Strict Directive is an ExpressionStatemeirt a Directive Prologue whose StringLiteral is either the exact
character sequences "use strict" or 'use strict '. A Use Strict Directive may not contain an
EscapeSequena LineContinuation

A Directive Prologue may contain more than one Use Strict Directive. However, an implementation may issue
a warning if this occurs.

NOTE The ExpressionStatemeiproductions of a Directive Prologue are evaluated normally during evaluation of the
containing SourceElements production. Implementations may define implementation specific meanings for
ExpressionStatemengroductions which are not a Use Strict Directive and which occur in a Directive Prologue. If an
appropriate notification mechanism exists, an implementation should issue a warning if it encounters in a Directive
Prologue an ExpressionStatemerthat is not a Use Strict Directive or which does not have a meaning defined by the
implementation.

15 Standard Built-in ECMAScript Objects

There are certain built-in objects available whenever an ECMAScript program begins execution. One, the
global object, is part of the lexical environment of the executing program. Others are accessible as initial
properties of the global object.

Unless specified otherwise, the [[Class]] internal property of a built-in object is "Function" if that built-in
object has a [[Call]] internal property, or "Object” if that built-in object does not have a [[Call]] internal
property. Unless specified otherwise, the [[Extensible]] internal property of a built-in object initially has the
value true.

Many built-in objects are functions: they can be invoked with arguments. Some of them furthermore are
constructors: they are functions intended for use with the new operator. For each built-in function, this
specification describes the arguments required by that function and properties of the Function object. For each
built-in constructor, this specification furthermore describes properties of the prototype object of that
constructor and properties of specific object instances returned by a new expression that invokes that
constructor.

Unless otherwise specified in the description of a particular function, if a function or constructor described in
this clause is given fewer arguments than the function is specified to require, the function or constructor shall
behave exactly as if it had been given sufficient additional arguments, each such argument being the
undefined value.

Unless otherwise specified in the description of a particular function, if a function or constructor described in
this clause is given more arguments than the function is specified to allow, the extra arguments are evaluated
by the call and then ignored by the function. However, an implementation may define implementation specific
behaviour relating to such arguments as long as the behaviour is not the throwing of a TypeError exception
that is predicated simply on the presence of an extra argument.

NOTE Implementations that add additional capabilities to the set of built-in functions are encouraged to do so by
adding new functions rather than adding new parameters to existing functions.

Every built-in function and every built-in constructor has the Function prototype object, which is the initial value
of the expression Function.prototype (15.3.4), as the value of its [[Prototype]] internal property.

102 © Ecma International 2011

secma

Unless otherwise specified every built-in prototype object has the Object prototype object, which is the initial
value of the expression Object.prototype (15.2.4), as the value of its [[Prototype]] internal property,
except the Object prototype object itself.

None of the built-in functions described in this clause that are not constructors shall implement the
[[Construct]] internal method unless otherwise specified in the description of a particular function. None of the
built-in functions described in this clause shall have a prototype property unless otherwise specified in the
description of a particular function.

This clause generally describes distinct behaviours
when it is fAcahedwedkpaespaobhoof Thhe ficalled as a funct
invocation of the constructorods [[Calll]] internal me t
corresponds to the invocationoftheconst ruct ords [[Construct]] internal

Every built-in Function object described in this claused whether as a constructor, an ordinary function, or
bothd has a length property whose value is an integer. Unless otherwise specified, this value is equal to the
largest number of named arguments shown in the subclause headings for the function description, including
optional parameters.

NOTE For example, the Function object that is the initial value of the slice property of the String prototype object is
described under the subclause headi ng AString. prototype.slice (start, end)
and end; therefore the value of the length property of that Function object is 2.

In every case, the length property of a built-in Function object described in this clause has the attributes
{[[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }. Every other property described in this

clause has the attributes { [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true } unless otherwise
specified.

15.1 The Global Object
The unique global object is created before control enters any execution context.

Unless otherwise specified, the standard built-in properties of the global object have attributes {[[Writable]]:
true, [[Enumerable]]: false, [[Configurable]]: true}.

The global object does not have a [[Construct]] internal property; it is not possible to use the global object as a
constructor with the new operator.

The global object does not have a [[Call]] internal property; it is not possible to invoke the global object as a
function.

The values of the [[Prototype]] and [[Class]] internal properties of the global object are implementation-
dependent.

In addition to the properties defined in this specification the global object may have additional host defined

properties. This may include a property whose value is the global object itself; for example, in the HTML
document object model the window property of the global object is the global object itself.

15.1.1 Value Properties of the Global Object

15.1.1.1 NaN

The value of NaNis NaN (see 8.5). This property has the attributes { [[Writable]]: false, [[Enumerable]]: false,
[[Configurable]]: false }.

© Ecma International 2011 103

secma

15.1.1.2 Infinity

The value of Infinity is +o (see 8.5). This property has the attributes { [[Writable]]: false, [[Enumerable]]:
false, [[Configurable]]: false }.

15.1.1.3 undefined

The value of undefined is undefined (see 8.1). This property has the attributes { [[Writable]]: false,
[[Enumerable]]: false, [[Configurable]]: false }.

15.1.2 Function Properties of the Global Object

15.1.2.1 eval (x)
When the eval function is called with one argument X, the following steps are taken:

If Type) is notString, returnx.

Let prog be the ECMAScript code that is the result of parsings aProgram If the parse fails, throw a
SyntaxError exception (but see also clause 16).

Let evalCtxbe the result of establishing a new execution context (10.4.2) for the evairogde

Let resultbe the result of evaluating the programg.

Exit the runniig execution contexavalCtx restoring the previous execution context.

If resulttype isnormal and its completion value is a valMethen return the valué.

If resulttype isnormal and its completion value ampty, then return the valugndefined.

Otherwise resulttype must behrow. Throwresultvalue as an exception.

N

NGO~

15.1.2.1.1 Direct Call to Eval

A direct call to the eval function is one that is expressed as a CallExpressionthat meets the following two
conditions:

The Reference that is the result of evaluating the MemberExpressiom the CallExpressiorhas an environment
record as its base value and its reference name is " eval ".

The result of calling the abstract operation GetValue with that Reference as the argument is the standard built-
in function defined in 15.1.2.1.

15.1.2.2 parselnt (string , radix)

The parselnt function produces an integer value dictated by interpretation of the contents of the string
argument according to the specified radix. Leading white space in string is ignored. If radix is undefined or 0,
it is assumed to be 10 except when the number begins with the character pairs Ox or 0X, in which case a radix
of 16 is assumed. If radix is 16, the number may also optionally begin with the character pairs Ox or 0X.

When the parselnt function is called, the following steps are taken:

1. LetinputStringbe ToStringétring).

2. Let S be a newly created substring odfiputString consisting of the first character that is not a
StrwhiteSpaceChaand all characters following that character. (In oteords, remove leading white
space.)f inputStringdoes not contain any such charactersSlbe the empty string.

3. Letsignbe 1.

4. If Sis not empty and the first character®fs a minus sign, letsignbe- 1.

5. If Sis not empty and the first charactefr Sis a plus sign+ or a minus sign, then remove the first character

from S.

Let R = Tolnt32¢adix).

Let stripPrefixbetrue.

8. If R, 0, then

104 © Ecma International 2011

secma

a. If R<2orR> 36, then returiMNaN.
b. If R, 16, letstripPrefixbefalse.
9. Else,R=0
a. LetR=10.
10. If stripPrefix is true, then
a. If the length ofSis at least 2 and the first two charactersSE r e eQxd h@®Xo ,fi t hen
the first two characters froil8and letR = 16.

11. If S contains any character that is not a raRixigit, then letZ be the substring of consisting of all
characters before the first such character; otherwis& thetS.

12. If Zis empty, returrNaN.

13. Let mathintbe the mathematical integer value that is represented inyradix-R notation, using the letters
A-Z and a-z for digits with values 10 through 35. (However, R is 10 andZ contains more than 20
significant digits, every significant digit after the 20th may be replaced Byda&it, at the option of the
implementation; and iR is not 2, 4, 8, 10, 16, or 32, thenathint may be animplementationdependent
approximation to the mathematical integer value that is representgdrbsadix-R notation.)

14. Let numberbe the Number value fanathint

15. Returnsign3 number

NOTE parseint may interpret only a leading portion of string as an integer value; it ignores any characters that
cannot be interpreted as part of the notation of an integer, and no indication is given that any such characters were
ignored.

15.1.2.3 parseFloat (string)

The parseFloat function produces a Number value dictated by interpretation of the contents of the string
argument as a decimal literal.

When the parseFloat function is called, the following steps are taken:

1. LetinputStringbe ToStringétring).

2. Let trimmedString be a substring ofinputString consisting of the tmost character that is not a
StrWhiteSpaceChaand all characters to the right of that charac{ar.other words, remove leading white
space.)f inputStringdoes not contain any such characterstri@émedStringbe the empty string.

3. If neither trimmedString nor any prefix oftrimmedStringsatisfies the syntax of &trDecimallLiteral (see
9.3.1), returnNaN.

4. Let numberStringoe the longest prefix afimmedString which might betrimmedStringitself, that satisfies
the syntax of &trDecimalLiteral

5. Retun the Number value for the MV afumberString

NOTE parseFloat may interpret only a leading portion of string as a Number value; it ignores any characters that
cannot be interpreted as part of the notation of an decimal literal, and no indication is given that any such characters were
ignored.

15.1.2.4 isNaN (number)

Returns true if the argument coerces to NaN, and otherwise returns false.

1. If ToNumberfiumbe) is NaN, returntrue.
2. Otherwise, returrfialse.

NOTE A reliable way for ECMAScript code to test if a value X is a NaN is an expression of the form X ==X . The
result will be true if and only if Xis a NaN.

15.1.2.5 isFinite (humber)

Returns false if the argument coerces to NaN, +a, or - &, and otherwise returns true.

1. If ToNumberfumbe) is NaN, +a, or- &, returnfalse.
2. Otherwise, returtrue.

© Ecma International 2011 105

r

e

secma

15.1.3 URI Handling Function Properties

Uniform Resource Identifiers, or URIs, are Strings that identify resources (e.g. web pages or files) and transport protocols
by which to access them (e.g. HTTP or FTP) on titerhet. The ECMAScript language itself does not provide any
support for using URIs except for functions that encode and decode URIs as described in 15.1.3.1, 15.1.3.2, 15.1.3.3 and
15.1.3.4.

NOTE Many implementations of ECMAScript provide additional functions and methods that manipulate web pages;
these functions are beyond the scope of this standard.

A URI is composed of a sequence of components separated by component separators. The general form is:
Scheme: First / Second; Third ? Fourth

wherethei t al i ci sed names repredge,ind AR ree nrtess earvde dil char act e
separators. The encodeURI and decodeURI functions are intended to work with complete URIs; they

assume that any reserved characters in the URI are intended to have special meaning and so are not

encoded. The encodeURIComponent and decodeURIComponent functions are intended to work with the

individual component parts of a URI; they assume that any reserved characters represent text and so must be

encoded so that they are not interpreted as reserved characters when the component is part of a complete

URI.

The following lexical grammar specifies the form of encoded URIs.

Syntax

uri i
uriCharactersgp

uriCharacters:::
uriCharacter uriCharacterg,

uriCharacter:::
uriReserved
uriUnescaped
uriEscaped

uriReserved:: one of
I ? @& =+ %,

uriUnescaped::
uriAlpha
DecimalDigit
uriMark

uriEscaped::
%HexDigit HexDigit

uriAlpha::: one of

abcdefghijklmnopgrstuyv W XYz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

uriMark ::: one of
St ()

NOTE The above syntax is based upon RFC 2396 and does not reflect changes introduced by the more recent RFC

3986.

When a character to be included in a URI is not listed above or is not intended to have the special meaning
sometimes given to the reserved characters, that character must be encoded. The character is transformed

106 © Ecma International 2011

secma

into its UTF-8 encoding, with surrogate pairs first converted from UTF-16 to the corresponding code point
value. (Note that for code units in the range [0,127] this results in a single octet with the same value.) The
resulting sequence of octets is then transformed into a String with each octet represented by an escape
sequence ofPxxdbhe form n

The encoding and escaping process is described by the abstract operation Encode taking two String
arguments string and unescapedSet

Let strLenbe the number of charactersstring.
Let R be the empty String.
Let k be 0.
Repeat
a. If kequalsstrLen returnR.
b. Let Cbe the character at positidewithin string.
c. If CisinunescapedSethen
i Let Sbe a String containing only the charac€r
ii. Let R be a new String value computed by concatenating the previous vaRiaradS.
d. Else,Cis notinunescapedSet
i If the code unit value o€ is not less than 0xDCO0O0O and not greater than OXDFFF, throw a
URIError exception.
ii. If the code unit value o€ is less than 0xD800 or greater than OXDBFF, then
1. LetV be the code unit valuef &.
iii. Else,
1. Increasek by 1.
2. If kequalsstrLen throw aURIError exception.
3. LetkCharbe the code unit value of the character at posikioithin string.
4. If kChar is less than OxDCOO or greater than OxDFFF, throwJRIError
exception.
5. LetV be (((the cod unit value ofC) i 0xD800)3 0x400 + KChari 0xDCO00) +
0x10000).
iv. Let Octetsbe the array of octets resulting by applying the LB Eansformation td/, and
letL be the array size.
V. Letj be 0.
Vi. Repeat, whilg < L
1. LetjOctetbe the value at positignhwithin Octets
2. LetSbe a String cont aXYon gvh¥fareegveo ugphreasea c t
hexadecimal digits encoding the valuejottet
3. LetRbe a new String value computed by concatenating the previous vaRiaraf
S
4. Increasq by 1.
e. Increasek by 1.

PoNPE

The unescaping and decoding process is described by the abstract operation Decode taking two String
arguments string and reservedSet

Let strLenbe the number of charactersstring.
Let R be the empty String.
Letk be 0.
Repeat
a. If kequalsstrLen returnR.
b. Let Cbe the character at positidewithin string.
c. IfCi s w6t ®Ohen
i Let Sbe the String containing only the charac@r
d. Else,Ci s%66
i Let start bek.
ii. If k+ 2 is greater than or equal $trLen throw aURIError exception.
iii. If the charactersat position k+1) and k + 2) within string do not represent hexadecimal
digits, throw aURIError exception.
iv. Let B be the 8bit value represented by the two hexadecimal digits at posikenl) and k
+ 2).

PP

© Ecma International 2011 107

secma

V. Incrementk by 2.
Vi. If the most significant bitn B is 0, then
1. LetC be the character with code unit valBe
2. If Cis not inreservedSetthen
a Let She the String containing only the charactr
3. Else,CisinreservedSet
a Let She the substring ddtring from positionstartto positionk included.
Vii. Else the most significant bit iB is 1
Let n be the smallest nenegative number such tha® €< n) & 0x80 is equal to 0.
If nequals 1 onis greater than 4, throw@RIError exception.
Let Octetsbe an array of ®it integers of size.
PutB into Octetsat position 0.
If k+ (33 (ni 1)) is greater than or equal strLen throw aURIError exception.
Letj be 1.
Repeat, whilg <n
a Incrementk by 1.
b If the character at positioki s not 6 YWRIErrott éxception. a
¢ If the characters at positionk (+1) and k + 2) within string do not
represent hexadecimal digits, throw&IError exception.
d Let B be the 8bit value represented by the two hexadecimal digits at
position k+ 1) and k + 2).
e If the two most significant bits irB are not 10, throw aJRIError
exception.
f Incrementk by 2.
g PutB into Octetsat position;.
h Increment by 1.

8. LetV be the value obtained by applying the UBRransformation t@®ctets that is,
from an array of octets into 2il-bit value. IfOctetsdoes not contain a valid UT&
encoding of a Unicode code point throw BIRIError exception.

9. If Vis less than 0x10000, then

a Let Cbe the character with code unit valie
b If Cis notinreservedSetthen
i. Let Sbe the String containing only the charac@r
¢ Else,CisinreservedSet
i Let S be the substring o$tring from position start to positionk
included.
10.Else,Vis O 0x10000
a LetL be (((V1 0x10000) & 0x3FF) + 0xDCO00).
b LetHbe (((V7 0x10000) >> 10) & 0x3FF) + 0xD800).
c Let Sbe the String containing the two characters with code wualtesH
andL.
e. LetRbe a new String value computed by concatenating the previous vaRiaradS.
f. Increasek by 1.

NogkrwhE

NOTE This syntax of Uniform Resource Identifiers is based upon RFC 2396 and does not reflect the more recent
RFC 3986 which replaces RFC 2396. A formal description and implementation of UTF-8 is given in RFC 3629.

In UTF-8, characters are encoded using sequences of 1 to 6 octets. The only octet of a "sequence" of one has the higher-
order bit set to 0, the remaining 7 bits being used to encode the character value. In a sequence of n octets, n>1, the initial
octet has the n higher-order bits set to 1, followed by a bit set to 0. The remaining bits of that octet contain bits from the
value of the character to be encoded. The following octets all have the higher-order bit set to 1 and the following bit set to
0, leaving 6 bits in each to contain bits from the character to be encoded. The possible UTF-8 encodings of ECMAScript
characters are specified in Table 21.

108 © Ecma International 2011

secma

Table 216 UTF-8 Encodings

Code Unit Value Representation 1% Octet 2" Octet 3% Octet 4" Octet
0x0000 - OxO007F 00000000 0zzzzzzz 0zzzzzz7
0x0080 - OxO7FF 00000 yyy yyzzzzzz 110yyyyy 10zzzzzz
0x0800 - OxD7FF XXXXYYYY YYZ22777 1110 xxxx 10yyyyyy 10zzzzzz
0xD800 - OxDBFF 110110 vv vWWWWWXX
followed by followed by 11110 uuu 10uuwwww | 10xxyyyy 10zzzzzz
0OxDCOO 7 OxDFFF 110111 yy yyzzzzzz
0xD800 - OxDBFF
not followed by causes URIError
0xDCO0 i OxDFFF
0xDCOO0 i OxDFFF causes URIError
OXEO00 - OxFFFF XXXXYYYY YYZ22777 1110 xx Xx 10yyyyyy 10zzzzzz
Where

uuuuu = vvwv

+1

to account for the addition of 0x10000 as in Surrogates, section 3.7, of the Unicode Standard.

The range of code unit values 0xD800-OxDFFF is used to encode surrogate pairs; the above transformation combines a
UTF-16 surrogate pair into a UTF-32 representation and encodes the resulting 21-bit value in UTF-8. Decoding
reconstructs the surrogate pair.

RFC 3629 prohibits the decoding of invalid UTF-8 octet sequences. For example, the invalid sequence CO 80 must not
decode into the character U+0000. Implementations of the Decode algorithm are required to throw a URIError when
encountering such invalid sequences.

15.1.3.1 decodeURI (encodedURI)

The decodeURI

function computes a new version of a URI in which each escape sequence and UTF-8
encoding of the sort that might be introduced by the encodeURI function is replaced with the character that it
represents. Escape sequences that could not have been introduced by encodeURI are not replaced.

When the decodeURI function is called with one argument encodedURIthe following steps are taken:

1. LeturiString be ToStringéncodedURI
2. LetreservedURISdbe aString containing one instance of each character validriReserved |

3. Return the result of calling Decodg{String, reservedURISgt

NOTE The

c h a#oda dtse rn oft

decoded

from

15.1.3.2 decodeURIComponent (encodedURIComponent)

escape

sequences

U#®

. n

even

The decodeURIComponent function computes a new version of a URI in which each escape sequence and
UTF-8 encoding of the sort that might be introduced by the encodeURIComponent function is replaced with

the character that

it represents.

When the decodeURIComponent function is called with one argument encodedURIComponenthe following

steps are taken:

1. LetcomponentStringpe ToStringéncodedURIComponéent
2. LetreservedURIComponentSke¢ the emptystring.
3. Return the result of calling DecoammponentStringreservedURIComponentJet

© Ecma International 2011

109

t

h

secma

15.1.3.3 encodeURI (uri)

The encodeURI function computes a new version of a URI in which each instance of certain characters is
replaced by one, two, three, or four escape sequences representing the UTF-8 encoding of the character.

When the encodeURI function is called with one argument uri, the following steps are taken:
1. LeturiString be ToStringgri).
2. LetunescapedURISdte aStringcontaining one instance of each character validriReservedand

uriUnescaped | u#® . i
3. Return the result of calling Encodg(String, unescapedURISgt

NOTE The c ha#0&sadt encoded to an escape sequence even though it is not a reserved or unescaped URI
character.

15.1.3.4 encodeURIComponent (uriComponent)

The encodeURIComponent function computes a new version of a URI in which each instance of certain
characters is replaced by one, two, three, or four escape sequences representing the UTF-8 encoding of the
character.

When the encodeURIComponent function is called with one argument uriComponentthe following steps are
taken:

1. LetcomponentStringpe ToStringgriComponeni
2. LetunescapedURIComponent®et aString containing one instance of each character valid in

uriUnescaped
3. Return the result of calling Encodm(mponentStringunescapedURIComponentyet

15.1.4 Constructor Properties of the Global Object

15.1.4.1 Object(...)

See 15.2.1 and 15.2.2.

15.1.4.2 Function (...)

See 15.3.1 and 15.3.2.

15.1.4.3 Array (...)

See 15.4.1 and 15.4.2.

15.1.4.4 String (...)

See 15.5.1 and 15.5.2.

15.1.45 Boolean(...)

See 15.6.1 and 15.6.2.

15.1.4.6 Number (...)

See 15.7.1 and 15.7.2.

110 © Ecma International 2011

o>eCha

15.1.4.7 Date(...)

See 15.9.2.

15.1.4.8 RegExp (...)

See 15.10.3 and 15.10.4.

15.1.4.9 Error(...)

See 15.11.1 and 15.11.2.

15.1.4.10 EvalError (...)

See 15.11.6.1.

15.1.4.11 RangeError (...)

See 15.11.6.2.

15.1.4.12 ReferenceError (...)

See 15.11.6.3.

15.1.4.13 SyntaxError (...)

See 15.11.6.4.

15.1.4.14 TypeError (...)

See 15.11.6.5.

15.1.4.15 URIError (...)

See 15.11.6.6.
15.1.5 Other Properties of the Global Object

15.1.5.1 Math

See 15.8.

15.1.5.2 JSON

See 15.12.
15.2 Object Objects

15.2.1 The Object Constructor Called as a Function

When Object is called as a function rather than as a constructor, it performs a type conversion.

© Ecma International 2011

111

secma

15.2.1.1 Object ([value])

When the Object function is called with no arguments or with one argument valug the following steps are
taken:

1. If valueis null, undefined or not supplied, create and return a new Object object exactly as if the standard
built-in Object constructor had been called with the same argumentsZ15.2.
2. Return ToObject(alue.

15.2.2 The Object Constructor

When Object is called as part of a new expression, it is a constructor that may create an object.

15.2.2.1 new Object ([value])

When the Object constructor is called with no arguments or with one argument value the following steps are
taken:

1. If valueis supplied, then
a. If Type(value) is Object, then
i If the valueis a native ECMAScript object, do not create a new object but simply return
value
ii. If the valueis a host object, then actions ar&ea and a result is returned in an
implementatiordependent manner that may depend on the host object.
b. If Type(valug is String, return ToObject@lue).
c. If Type(value) is Boolean, return ToObjeatélue.
d. If Type(value) is Number, return ToObjectélue.
Assert:The argumenvaluewas not supplied or its type was Null or Undefined.
Let obj be a newly ceated native ECMAScript object.
Set he [[Prototype]] internal property afbjto the standard buiin Object prototype object (15.2.4).
Set he [[Class]] nternal property obbjto "Object"
Set he [[Extensible]] internal property afbj to true.
Setall the internal methodsf obj as specified in 8.12
Returnobj.

NN

15.2.3 Properties of the Object Constructor

The value of the [[Prototype]] internal property of the Object constructor is the standard built-in Function
prototype object.

Besides the internal properties and the length property (whose value is 1), the Object constructor has the
following properties:

15.2.3.1 Object.prototype

The initial value of Qbject.prototype is the standard built-in Object prototype object (15.2.4).
This property has the attributes {[[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.
15.2.3.2 Object.getPrototypeOf (O)

When the getPrototypeOf function is called with argument O, the following steps are taken:

1. If Type(O) is not Object throw &ypeError exception.
2. Return thevalue of the[[Prototype]]internalproperty ofO.

112 © Ecma International 2011

secma

15.2.3.3 Object.getOwnPropertyDescriptor (O, P)
When the getOwnPropertyDescriptor function is called, the following steps are taken:

If Type(O) is not Object throw &ypeError exception.

Let namebe ToStringP).

Let desche the result of calling the [[GetOwnProperty]] internal metho®@afith argumenthame
Return the result of calling BmPropertyDescriptodesq (8.10.4).

PonNE

15.2.3.4 Object.getOwnPropertyNames (O)
When the getOwnPropertyNames function is called, the following steps are taken:

1. If Type(O) is not Object throw &ypeError exception.

2. Letarray be the result of creating a nedbject as if by the expressiorew Array () whereArray is the
standard builin constructor with that name.

3. LetnbeO.

4. For each named own propef®yof O

a. Letnamebe theStringvalue that is the name &

b. Call the [[DefineOwnProperty]] internal method array with arguments ToString{, the
PropertyDescriptor {[[Value]|lname [[Writable]]: true, [[Enumerable]]:true, [[Configurable]]:
true}, andfalse.

c. Incrementn by 1.

5. Returnarray.

NOTE If O is a String instance, the set of own properties processed in step 4 includes the implicit properties defined
in 15.5.5.2 that correspond to charact®8tmingpositions within t

15.2.3.5 Object.create (O [, Properties])

The create function creates a new object with a specified prototype. When the create function is called, the
following steps are taken:

1. If Type(O) is not Object or Null throw &ypeError exception.

2. Letobjbe the result of creating a new object as if by the expression new Object() where Object is the
standard builin constructor with that name

3. Set the [[Prototype]] internal property objto O.

4. If the argumen®Propertiesis present and natndefined, add own properties tobj as if by calling the
standard builin functionObject.defineProperties with argumentbj and Properties

5. Returnobij.

15.2.3.6 Object.defineProperty (O, P, Attributes)

The defineProperty function is used to add an own property and/or update the attributes of an existing own
property of an object. When the defineProperty function is called, the following steps are taken:

If Type(O) is not Object throw dypeError exception.

Let namebe ToStringP).

Let descbe the resulbf calling ToPropertyDescriptawith Attributesas the argument.
Call the [[DefineOwnProperty]] internal method Ofwith argumentsname desg andtrue.
ReturnO.

oW E

15.2.3.7 Object.defineProperties (O, Properties)

The defineProperties function is used to add own properties and/or update the attributes of existing own
properties of an object. When the defineProperties function is called, the following steps are taken:

1. If Type(O) is not Object throw &ypeError exception.

2. Letpropshe ToObjectPropertiey.
3. Letnamesbe an internal list containing the names of each enumerable own propgntypsf

© Ecma International 2011 113

secma

4. Letdescriptorshe an empty interdd.ist.
5. For eachelementP of namesin list order,
a. LetdescObjbe the result of calling the [[Get]] internal methodpybpswith P as the argument.
b. Letdescbe the result of calling ToPropertyDescriptor witbscObjas the argument.
c. Appendthe pair (a tweelement List) consisting d® anddescto the end oflescriptors
6. For eachpair from descriptorsin list order,
a. LetP be the first element gfair.
b. Letdescbe the second element pair.
c. Call the [[DefineOwnProperty]] internal method &fwith argument$, desg andtrue.
7. RewurnO.

If an implementation defines a specific order of enumeration for the for-in statement, that same enumeration
order must be used to order the list elements in step 3 of this algorithm.

15.2.3.8 Object.seal (O)
When the seal function is called, the following steps are taken:

1. If Type(O) is not Object throw d&ypeError exception.
2. For each named own property nafef O,
a. Letdesche the result of calling the [[GetOwnProperty]] internal metho®afith P.
b. If desc[[Configurable]]is true, setdesc[[Configurable]] tofalse.
c. Call the [[DefineOwnProperty]] internal method @fwith P, des¢ andtrue as arguments.
3. Set the [[Extensible]] internal property @fto false.
4. ReturnO.

15.2.3.9 Object.freeze (O)
When the freeze function is called, the following steps are taken:

1. If Type(O) is not Object throw &ypeError exception.
2. For each named own property namef O,

a. Letdescbe the result of calling the [[GetOwnProperty]] internal metho®afith P.

b. If IsDataDescriptordesq istrue, then

i. If desc[[Writable]] is true, setdesc[[Writable]] to false.

c. If desc[[Configurable]] istrue, setdesc[[Configurable]] tofalse.

d. Call the [[DefineOwnProperty]] internal method Ofwith P, desg andtrue as arguments.
3. Set the [[Extensible]] interngroperty ofO to false.
4. ReturnO.

15.2.3.10 Object.preventExtensions (O)
When the preventExtensions function is called, the following steps are taken:

1. If Type(O) is not Object throw &ypeError exception.
2. Set the [[Extensible]] internal property @fto false.
3. ReturnO.

15.2.3.11 Object.isSealed (O)
When the isSealed function is called with argument O, the following steps are taken:

If Type(O) is not Object throw &ypeError exception.

For each named own property naef O,
a. Letdescbe the result otalling the [[GetOwnProperty]] internal method Ofwith P.
b. If desc[[Configurable]] istrue, then returrfalse.

If the [[Extensible]] internal property dD is false, then returrtrue.

Otherwise, returifialse.

N

hw

114 © Ecma International 2011

secma

15.2.3.12 Object.isFrozen (0O)
When the isFrozen function is called with argument O, the following steps are taken:

1. If Type(O) is not Object throw &ypeError exception.
2. For each named own property naRef O,
a. Letdescbe the result of calling the [[GetOwnProperty]] internal metho®afith P.
b. If IsDataDescriptoidesq istrue then
i If desc[[Writable]] is true, returnfalse.
c. If desc[[Configurable]] istrue, then returrfalse.
3. If the [[Extensible]] internal property d® is false, then returrtrue.
4. Otherwise, returfialse.

15.2.3.13 Object.isExtensible (O)
When the isExtensible function is called with argument O, the following steps are taken:

1. If Type(O) is not Object throw &ypeError exception.
2. Return the Boolean value of the [[Extensible]] internal propert@of

15.2.3.14 Object.keys (O)
When the keys function is called with argument O, the following steps are taken:

1. If the TypeQ) is not Object, throw &ypeError exception.
2. Letn be the number of own enumerable propertie®of
3. Letarray be the result of creating a new Object as if by theregsiomnew Array(n) whereArray is
the standard budin constructor with that name.
4. Letindexbe O.
5. For each own enumerable property@ivhose namétringis P
a. Call the [[DefineOwnProperty]] internal method afray with arguments ToStringfdeX, the
PropertyDescriptor {[[Value]]P, [[Writable]]: true, [[Enumerable]]itrue, [[Configurable]]:true},
andfalse.
b. Incrementindexby 1.
6. Returnarray.

If an implementation defines a specific order of enumeration for the for-in statement, that same enumeration
order must be used in step 5 of this algorithm.

15.2.4 Properties of the Object Prototype Object

The value of the [[Prototype]] internal property of the Object prototype object is null, the value of the [[Class]]
internal property is "Object" , and the initial value of the [[Extensible]] internal property is true.

15.2.4.1 Object.prototype.constructor

The initial value of Object.prototype.constructor is the standard built-in Object constructor.

15.2.4.2 Object.prototype.toString ()
When the toString method is called, the following steps are taken:

If the this value isundefined, return"[object Undefined]”

If the this value isnull, return"[object Null]"

Let O be the result of calling ToObject passing thes value as the argument.

Let classbe the valie of the [[Class]] internal property @.

Return theString value that is the result of concatenating the tf8&éngs”[object " , class and"]"

S

© Ecma International 2011 115

secma

15.2.4.3 Object.prototype.toLocaleString ()

When the toLocaleString method is called, the following steps are taken:

1. Let O be the result of calling ToObject passing thés value as the argument.

2. LettoStringbe the result of calling the [[Get]] internal method®@passing'toString” as the argument.

3. If IsCallabletoString is false, throw aTypeError excepion.

4. Return the result of calling the [[Call]] internal methodtoStringpassingO as thethis value and no
arguments.

NOTE 1 This function is provided to give all Objects a generic toLocaleString interface, even though not all may

use it. Currently, Array , Number, and Date provide their own locale-sensitive toLocaleString methods.

NOTE 2 The first parameter to this function is likely to be used in a future version of this standard; it is recommended
that implementations do not use this parameter position for anything else.

15.2.4.4 Object.prototype.valueOf ()
When the valueOf method is called, the following steps are taken:

1. Let O be the result of calling ToObject passing thés value as the argument.
2. If Ois the result of calling the Object constractvith a host object (15.2.2.1), then
a. Return eithelO or another value such as the host object originally passed to the constructor. The
specific result that is returned is implementatidefined.
3. ReturnO.

15.2.4.5 Object.prototype.hasOwnProperty (V)
When the hasOwnProperty method is called with argument V, the following steps are taken:

Let P be ToStringy).

Let O be the result of calling ToObject passing thes value as the argument.

Let descbe the result of calling the [[GetOwnProperty]] internalthwd of O passingP as the argument.
If descis undefined, returnfalse.

Returntrue.

ghwhE

NOTE 1 Unlike [[HasProperty]] (8.12.6), this method does not consider objects in the prototype chain.

NOTE 2 The ordering of steps 1 and 2 is chosen to ensure that any exception that would have been thrown by step 1
in previous editions of this specification will continue to be thrown even if the this value is undefined or null.

15.2.4.6 Object.prototype.isPrototypeOf (V)
When the isPrototypeOf method is called with argument V, the following steps are taken:

1. If Vis not an object, returfalse.
2. Let O be the result of calling ToObject passing thes value as the argument.
3. Repeat

a. LetV be the value of the [[Prototype]] internal property\of

b. if Visnull, returnfalse

c. If OandV refer to the same object, retumue.

NOTE The ordering of steps 1 and 2 is chosen to preserve the behaviour specified by previous editions of this
specification for the case where V is not an object and the this value is undefined or null.

15.2.4.7 Object.prototype.propertylsEnumerable (V)

When the propertylsEnumerable method is called with argument V, the following steps are taken:

116 © Ecma International 2011

secma

Let P be ToStringy).

Let O be the result of calling ToObject passing thés value as the argument.

Let descbe theresult of calling the [[GetOwnProperty]] internal method@passingP as the argument.
If descis undefined, returnfalse.

Return the value odlesc[[Enumerable]].

gD E

NOTE 1 This method does not consider objects in the prototype chain.

NOTE 2 The ordering of steps 1 and 2 is chosen to ensure that any exception that would have been thrown by step 1
in previous editions of this specification will continue to be thrown even if the this value is undefined or null.

15.2.5 Properties of Object Instances

Object instances have no special properties beyond those inherited from the Object prototype object.
15.3 Function Objects

15.3.1 The Function Constructor Called as a Function

When Function is called as a function rather than as a constructor, it creates and initialises a new Function
object. Thus the function call Function(é) is equivalent to the object creation expression new
Function(&) with the same arguments.

15.3.1.1 Function (pl, p2, é , pn, body)

When the Function function is called with some arguments p1, p2, € , pn, body(where n might be 0, that is,
t her e pOr earngou nfie nt s hodyanight alsw hoebe provided), the following steps are taken:

1. Create and return a new Function object as if the standardibwitinstructor Function was used imaw
expression with the same arguments (15.3.2.1).

15.3.2 The Function Constructor

When Function is called as part of a new expression, it is a constructor: it initialises the newly created object.

15.3.2.1 new Function (p1, p2, é , pn, body)

The last argument specifies the body (executable code) of a function; any preceding arguments specify formal
parameters.

When the Function constructor is called with some arguments p1, p2, € , pn, body(where n might be 0, that
i s, thermp& ar@umen ts hodyaight alse hoebe provided), the following steps are taken:

Let argCountbe the total number of arguments passed to this function invocation.
Let P be the emptystring.
If argCount= 0, letbodybe the empty5tring
Else ifargCount= 1, letbodybe thatargument.
Else,argCount> 1
a. LetfirstArg be the first argument.
b. LetP be ToStringfirstArg).
c. Letkbe 2.
d. Repeat, whil&k < argCount
i Let nextArgbe thek&h argument.
ii. Let P be the result of concatenating the previous valuB,ahe String"," (a comma)and
ToStringhextArg.
iil. Increasek by 1.
e. Letbodybe thek&h argument.

ghrwbdE

© Ecma International 2011 117

secma

Let bodybe ToStringbody).
If Pis not parsable asformalParameterLisf, then throw aSyntaxError exception.
If bodyis not parsable aBunctionBodythen throw aSyntaxError excepton.
If bodyis strict mode codésee 10.1.1}jhen letstrict betrue, else letstrict befalse.
. If strictis true, throw any exceptions specified in 13.1 that apply.
. Return a new Function object created as specified in 13.2 paBsisgheFormalParameteList,, andbody
as theFunctionBody Pass in the Global Environment as ®@peparameter andtrict as theStrict flag.

RBO®xNO

= O

A prototype property is automatically created for every function, to provide for the possibility that the
function will be used as a constructor.

NOTE It is permissible but not necessary to have one argument for each formal parameter to be specified. For
example, all three of the following expressions produce the same result:

new Function("a", "b", "c", "return a+b+c")

new Function("a, b, c", "return a+b+c")

new Function("a,b", "c", "return a+b+c")
15.3.3 Properties of the Function Constructor
The Function constructor is itself a Function object and its [[Class]] is "Function” . The value of the
[[Prototype]] internal property of the Function constructor is the standard built-in Function prototype object
(15.3.4).

The value of the [[Extensible]] internal property of the Function constructor is true.

The Function constructor has the following properties:

15.3.3.1 Function.prototype
The initial value of Function.prototype is the standard built-in Function prototype object (15.3.4).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.3.3.2 Function.length

This is a data property with a value of 1. This property has the attributes { [[Writable]]: false, [[Enumerable]]:
false, [[Configurable]]: false }.

15.3.4 Properties of the Function Prototype Object

The Function prototype object is itself a Function object (its [[Class]] is "Function”) that, when invoked,
accepts any arguments and returns undefined.

The value of the [[Prototype]] internal property of the Function prototype object is the standard built-in Object
prototype object (15.2.4). The initial value of the [[Extensible]] internal property of the Function prototype
object is true.

The Function prototype object does not have a valueOf property of its own; however, it inherits the valueOf
property from the Object prototype Object.

The length property of the Function prototype object is O.

15.3.4.1 Function.prototype.constructor

The initial value of Function.prototype.constructor is the built-in Function constructor.

118 © Ecma International 2011

secma

15.3.4.2 Function.prototype.toString ()

An implementation-dependent representation of the function is returned. This representation has the syntax of
a FunctionDeclaration Note in particular that the use and placement of white space, line terminators, and
semicolons within the representation String is implementation-dependent.

The toString function is not generic; it throws a TypeError exception if its this value is not a Function
object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.3.4.3 Function.prototype.apply (thisArg, argArray)

When the apply method is called on an object func with arguments thisArg and argArray, the following steps
are taken:

If IsCallablefunc) is false, then throw al'ypeError exception.
If argArray is null or undefined, then
a. Return the result of calling the [[Call]] internal methodfohc, providingthisArgas thethis value
and an empty list of arguments.
If Type(argArray) is not Object, then throw @ypeError exception.
Let len be the result of calling the [[Get]] internal methodasfArray with argument'length”
Let n be ToUint32(en).
Let arglList be anempty List.
Letindexbe 0.
Repeat whiléndex<n
a. LetindexNamebe ToStringindex).
b. LetnextArgbe the result of calling the [[Get]] internal methodasfArray with indexNameas the
argument.
c. AppendnextArgas the last element afrgList.
d. Setindextoindex+ 1.
9. Return the result of calling the [[Call]] internal methodfofc, providingthisArgas thethis value and
argList as the list of arguments.

N

e R

The length property of the apply method is 2.

NOTE The thisArg value is passed without modification as the this value. This is a change from Edition 3, where a
undefined or null thisArg is replaced with the global object and ToObject is applied to all other values and that result is
passed as the this value.

15.3.4.4 Function.prototype.call (thisArg[,argl[, arg2, é 1 1)

When the call method is called on an object func with argument thisArg and optional arguments argl, arg2
etc, the following steps are taken:

1. If IsCallablefuncg) is false, then throw arypeError exception.

2. LetargListbe an empty List.

3. If this method was called with more than one argument then in left to right order startingrgdthppend
each argument as the last elemenaiafList

4. Return the result of calling the [[Call]] internal methodfofc, providingthisArg as thethis value am
arglListas the list of arguments.

The length property of the call method is 1.

NOTE The thisArg value is passed without modification as the this value. This is a change from Edition 3, where a
undefined or null thisArg is replaced with the global object and ToObject is applied to all other values and that result is
passed as the this value.

15345 Function.prototype.bind (thisArg [, argl [, arg?2

The bind method takes one or more arguments, thisArg and (optionally) argl, arg2, etc, and returns a new
function object by performing the following steps:

© Ecma International 2011 119

secma

Let Targetbe thethis value.
If IsCallable(Targe) is false, throw aTypeError exception.
Let A be a new (possibly empty) internal list of all of the argument values providedthigérg (argl, arg2
etc), in order.
Let F be a new native ECMAScript object .
Setall the internal methodexcept for [[Get]], ofF as specified in 8.12
Set the [[Gef]] internal property ofF asspecifiedin 15.35.4.
Set the [[TargetFunction]] internal property Bfto Target.
Set the [[BoundThis]] internal property &fto the value othisArg.
Set the [[BoundArgs]] internal property &fto A.
. Set the [[Class]] internal property &fto "Function" .
. Set the [[Prototype]] internal property &fto the standard buiin Functon prototype object as specified in
15.3.3.1.
. Set the [[Call]] internal property df as described in 15.3.4.5.1.
. Set the [[Construct]] internal property &fas described in 15.3.4.5.2.
. Set the [[HaslInstance]] internal propertyffis described in 15.8.5.3.
. If the [[Class]] internal property ofargetis "Function” , then
a. LetL be thelength property ofTargetminus the length oA.
b. Set thelength own property ofF to either 0 o, whichever is larger.
16. Else set théength own property ofF to 0.
17. Set he attributes of theength own property ofF to the values specified in 15.3.5.1.
18. Set the [[Extensible]] internal property &fto true.
19. Let throwerbe the [[ThrowTypeError]] function Object (13.2.3).
20. Call the [[DefineOwnProperty]] internal method Bfwith arguments'caller” |, PropertyDescriptor
{[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]false, [[Configurable]]:false}, andfalse.
21. Call the [[DefineOwnProperty]] internal method Bfwith arguments'arguments” , PropertyDescriptor
{[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]:false, [[Configurable]]:false}, and false.
22. ReturnF.

PP O0O~NO U~ WN -

e e el o
ghwN

The length property of the bind method is 1.

NOTE Function objects created using Function.prototype.bind do not have a prototype property or the
[[Code]], [[FormalParameters]], and [[Scope]] internal properties.

15.3.4.5.1 [[Call]]

When the [[Call]] internal method of a function object, F, which was created using the bind function is called
with a this value and a list of arguments ExtraArgs the following steps are taken:

Let boundArgsbe the value oF 6[BoundArgs]] internal property.

Let boundThishe the value oF 6[BoundThis]] internal property.

Let targetbe the value oF &[FTargetFunction]] internal property.

Let argsbe a new list containing the same vaduas the lisboundArgsin the same order followed by the
same values as the liBktraArgsin the same order.

Return the result of calling the [[Call]] internal methodtafgetprovidingboundThisas thethis value and
providingargsas the arguments.

PR

o

15.3.4.5.2 [[Construct]]

When the [[Construct]] internal method of a function object, F that was created using the bind function is called
with a list of arguments ExtraArgs the following steps are taken:

Let targetbe the value oF 6[ETargetFunction]]internal property.

If targethas no [[Construct]] internal method,TgpeError exception is thrown.

Let boundArgsbe the value oF 6[BoundArgs]] internal property.

Let argsbe a new list containing the same values as thd&andArgsin the same ordeollowed by the
same values as the liBktraArgsin the same order.

Return the result otalling the [[Construct]] internal method ¢drget providing argsas the arguments.

PoNPE

o

120 © Ecma International 2011

secma

15.3.4.5.3 [[HaslInstance]] (V)

When the [[Haslnstance]] internal method of a function object F, that was created using the bind function is
called with argument V, the following steps are taken:

1. Lettargetbe the value oF &[FrargetFunction]] internal property.
2. If targethas no [[HaslInstance]] internal methodTypeError exceptionis thrown.
3. Return the result of calling the [[HasInstance]] internal methothafet providingV as the argument.

15.3.5 Properties of Function Instances

In addition to the required internal properties, every function instance has a [[Call]] internal property and in
most cases uses a different version of the [[Get]] internal property. Depending on how they are created (see
8.6.2, 13.2, 15, and 15.3.4.5), function instances may have a [[HasInstance]] internal property, a [[Scope]]
internal property, a [[Construct]] internal property, a [[FormalParameters]] internal property, a [[Code]] internal
property, a [[TargetFunction]] internal property, a [[BoundThis]] internal property, and a [[BoundArgs]] internal

property.
The value of the [[Class]] internal property is "Function”.

Function instances that correspond to strict mode functions (13.2) and function instances created using the

Function.prototype.bind method (15. 3. 4. 5) have properties named fica
TypeError exception. An ECMAScript implementation must not associate any implementation specific
behaviour with accesses of these properties from strict mode function code.

15.3.5.1 length

The value of thelength property is an integer that i nddespmedted By t he

the function. However, the language permits the function to be invoked with some other number of arguments.
The behaviour of a function when invoked on a number of arguments other than the number specified by its
length property depends on the function. This property has the attributes { [[Writable]]: false, [[Enumerable]]:
false, [[Configurable]]: false }.

15.3.5.2 prototype

The value of the prototype property is used to initialise the [[Prototype]] internal property of a newly created
object before the Function object is invoked as a constructor for that newly created object. This property has
the attribute { [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false }.

NOTE Function objects created using Function.prototype.bind do not have a prototype property.

15.3.5.3 [[HasInstance]] (V)
Assume F is a Function object.
When the [[Haslnstance]] internal method of F is called with value V, the following steps are taken:

If Vis not an object, returfalse.
Let O be the result of callig the [[Get]] internal method df with property naméprototype"
If Type(O) is notObject, throw aTypeError exception.
Repeat
a. LetV be the value of the [[Prototype]] internal property\of
b. If Visnull , returnfalse
c. If OandV refer to the same objgateturntrue.

PP

NOTE Function objects created using Function.prototype.bind have a different implementation of
[[HasInstance]] defined in 15.3.4.5.3.

© Ecma International 2011 121

secma

15.3.5.4 [[Get]] (P)

Function objects use a variation of the [[Get]] internal method used for other native ECMAScript objects
(8.12.3).

Assume F is a Function object. When the [[Get]] internal method of F is called with property name P, the
following steps are taken:

1. Letv be the result of calling the default [[Get]] internal method (8.12.3F @assingP as te property name

argument.
2. If Pis"caller" andv is a strict mode Function object, throwl'gpeError exception.
3. Returnv.
NOTE Function objects created using Function.prototype.bind use the default [[Get]] internal method.

15.4 Array Objects

Array objects give special treatment to a certain class of property names. A property name P (in the form of a
String value) is an array index if and only if ToString(ToUint32P)) is equal to P and ToUint32(P) is not equal to
2%%. 1. A property whose property name is an array index is also called an element. Every Array object has a
length property whose value is always a nonnegative integer less than 2°2 The value of the length
property is humerically greater than the name of every property whose name is an array index; whenever a
property of an Array object is created or changed, other properties are adjusted as necessary to maintain this
invariant. Specifically, whenever a property is added whose name is an array index, the length property is
changed, if necessary, to be one more than the numeric value of that array index; and whenever the length
property is changed, every property whose name is an array index whose value is not smaller than the new
length is automatically deleted. This constraint applies only to own properties of an Array object and is
unaffected by length or array index properties that may be inherited from its prototypes.

An object, O, is said to be sparse if the following algorithm returns true:
1. Letlenbe the result of calling the [[Getjhternd method ofO with argument’length” .
2. Foreachintegeri n t he i<dTeUmtg2(en0 O
a. Let elembe the result of calling the [[GetOwnPropertyiljternal method ofO with argument
ToString().

b. If elemis undefined, returntrue.
3. Returnfalse.

15.4.1 The Array Constructor Called as a Function
When Array is called as a function rather than as a constructor, it creates and initialises a new Array object.

Thus the function call Array(€) is equivalent to the object creation expression new Array(€) with the
same arguments.

15.4.1.1 Array ([item1],item2[,€é 111)
When the Array function is called the following steps are taken:

1. Create and return a new Array object exactly as if the standardibwitinstructorArray was used in a
new expression with the samarguments (15.4.2).

15.4.2 The Array Constructor

When Array is called as part of a new expression, it is a constructor: it initialises the newly created object.

15.4.2.1 new Array ([itemO[,item1[,é 1)1 1]

This description applies if and only if the Array constructor is given no arguments or at least two arguments.

122 © Ecma International 2011

secma

The [[Prototype]] internal property of the newly constructed object is set to the original Array prototype object,
the one that is the initial value of Array.prototype (15.4.3.1).

The [[Class]] internal property of the newly constructed object is set to "Array"

The [[Extensible]] internal property of the newly constructed object is set to true.

The length property of the newly constructed object is set to the number of arguments.

The 0 property of the newly constructed object is set to itemO (if supplied); the 1 property of the newly
constructed object is set to iteml (if supplied); and, in general, for as many arguments as there are, the k
property of the newly constructed object is set to argument k, where the first argument is considered to be

argument number 0. These properties all have the attributes {[[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true}.

15.4.2.2 new Array (len)

The [[Prototype]] internal property of the newly constructed object is set to the original Array prototype object,
the one that is the initial value of Array.prototype (15.4.3.1). The [[Class]] internal property of the newly
constructed object is set to "Array" . The [[Extensible]] internal property of the newly constructed object is set
to true.

If the argument len is a Number and ToUint32(en) is equal to len, then the length property of the newly
constructed object is set to ToUint32(en). If the argument lenis a Number and ToUint32(en) is not equal to len,
a RangeError exception is thrown.

If the argument lenis not a Number, then the length property of the newly constructed object is set to 1 and

the 0 property of the newly constructed object is set to len with attributes {[[Writable]]: true, [[Enumerable]]:
true, [[Configurable]]: true}.

15.4.3 Properties of the Array Constructor

The value of the [[Prototype]] internal property of the Array constructor is the Function prototype object
(15.3.4).

Besides the internal properties and the length property (whose value is 1), the Array constructor has the
following properties:

15.4.3.1 Array.prototype
The initial value of Array.prototype is the Array prototype object (15.4.4).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

15.4.3.2 Array.isArray (arg)

The isArray function takes one argument arg, and returns the Boolean value true if the argument is an object
whose class internal property is " Array " ; otherwise it returns false. The following steps are taken:

1. If Type(arg) is not Object, returfalse.
2. If the value of the [[Class]] internal property afg is " Array ", then returrtrue.
3. Returnfalse

15.4.4 Properties of the Array Prototype Object

The value of the [[Prototype]] internal property of the Array prototype object is the standard built-in Object
prototype object (15.2.4).

© Ecma International 2011 123

secma

The Array prototype object is itself an array; its [[Class]] is "Array" , and it has a length property (whose
initial value is +0) and the special [[DefineOwnProperty]] internal method described in 15.4.5.1.

In following descriptions of functions that are propert.i
refers to the object that is the this value for the invocation of the function. It is permitted for the this to be an
object for which the value of the [[Class]] internal property is not "Array"

NOTE The Array prototype object does not have a valueOf property of its own; however, it inherits the valueOf
property from the standard built-in Object prototype Object.

15.4.4.1 Array.prototype.constructor

The initial value of Array.prototype.constructor is the standard built-in Array constructor.

15.4.4.2 Array.prototype.toString ()
When the toString method is called, the following steps are taken:

Let array bethe result of calling ToObject on thhkis value.

Let funcbe the result of calling the [[Get]] internal methodasfay with argument’join”

If IsCallablefunc) is false, then letfuncbe the standard builh method Object.prototype.toString (15.2.4.2).
Return the result of calling the [[Call]] internal methodfofc providing array as thethis value and an
empty arguments list.

PobNPE

NOTE The toString function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the toString function can be
applied successfully to a host object is implementation-dependent.

15.4.4.3 Array.prototype.toLocaleString ()

The elements of the array are converted to Strings using their toLocaleString methods, and these Strings
are then concatenated, separated by occurrences of a separator String that has been derived in an
implementation-defined locale-specific way. The result of calling this function is intended to be analogous to
the result of toString , except that the result of this function is intended to be locale-specific.

The result is calculated as follows:

1. Letarray be the result of calling ToObject passing thes value as the argument.

2. LetarrayLenbe theresult of calling the [[Get]] internal method afray with argument'length”

3. Letlenbe ToUint32arrayLen.

4. Letseparatorbe the String value for the listeparatoiStringa ppr opr i ate for the host en
locale (this is derived in an impientationdefined way).

5. If lenis zero, return the empt$tring

6. LetfirstElementbe the result of calling the [[Get]] internal methodasfay with argument'0” .

7. |If firstElementis undefined or null, then
a. LetRbe the emptystring.
8. Else
a. LetelementObpe ToObjectfirstElemeny.
b. Letfuncbe the result of calling the [[Get]] internal methoded¢ mentObjwith argument
"toLocaleString"
If IsCallablefunc) is false, throw aTypeError exception.
Let R be the result of calling the [[Call]] internal methodfahc providing elementObps thethis
value and an empty arguments list.
9. Letkbel.
10. Repeat, whil&k < len
a. Let Sbe aStringvalue produced by concatenatiRgandseparator
b. LetnextElemenbe the result of calling the [[Get]] internal methodasfay with argument
ToStringK).

oo

124 © Ecma International 2011

ecina

c. If nextElements undefined or null, then
i Let R be the emptystring.
d. Else
i Let elementObpe ToObjectiextElement
ii. Let funcbe the result of calling the [[Get]] internal methoded¢ mentObwith argument
"toLocaleString"
iii. If IsCallablefunc) is false, throw aTypeError exception.
iv. Let R be the result of calling the [[Call]] internal methodfahc providing elementObps
the this value and an empty arguments list.
e. LetRbe aStringvalue produced by concatenatiB@andR.
f. Increasek by 1.
11. ReturnR.

NOTE 1 The first parameter to this function is likely to be used in a future version of this standard; it is recommended
that implementations do not use this parameter position for anything else.

NOTE 2 The toLocaleString function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the toLocaleString function can
be applied successfully to a host object is implementation-dependent.

15444 Array.prototype.concat ([iteml [item2 |

When the concat method is called with zero or more arguments iteml, item2 etc., it returns an array
containing the array elements of the object followed by the array elements of each argument in order.

The following steps are taken:

1. Let O be the result of calling ToObject passing thes value as the argument.
2. LetAbe anew array created as if by the expressiem Array() whereArray is the standard budin
constructor with lhat name.
3. LetnbeO.
4. Letitemsbe an internal List whose first elementdsand whose subsequent elements are, in left to right
order, the arguments that were passed to this function invocation.
5. Repeat, whildétemsis not empty
a. Remove the first elementdm itemsand letE be the value of the element.
b. If the value of the [[Class]] internal property Bfis "Array" , then
i Letk be 0.
ii. Let len be the result of calling the [[Get]] internal methodEivith argument'length”
iii. Repeat, whil&k < len
1. LetP be ToSting(k).
2. Letexistsbe the result of calling the [[HasProperty]] internal method a¥ith P.
3. If existsis true, then
a LetsubElemenbe the result of calling the [[Get]] internal methodBf
with argumentP.
b Call the [[DefineOwnProperty]] internal method Afwith arguments
ToString(), Property Descriptor {[[Value]]subElement[[Writable]]:
true, [[Enumerable]]itrue, [[Configurable]]:true}, and false.
4. Increasen by 1.
5. Increasek by 1.
c. Else,Eis not an Array
i Call the [[DefineOwnProperty]] internal metdof A with arguments ToString{, Property
Descriptor {[[Value]]: E, [[Writable]]: true, [[Enumerable]]itrue, [[Configurable]]:true},
andfalse.
ii. Increasen by 1.
6. ReturnA.

The length property of the concat method is 1.

© Ecma International 2011 125

secma

NOTE The concat function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the concat function can be applied
successfully to a host object is implementation-dependent.

15.4.45 Array.prototype.join (separator)

The elements of the array are converted to Strings, and these Strings are then concatenated, separated by
occurrences of the separator If no separator is provided, a single comma is used as the separator.

The jo in method takes one argument, separator and performs the following steps:

Let O be the result of calling ToObject passing thés value as the argument.
Let lenValbe the result of calling the [[Get]] internal method®@fvith argument’length”
Let len be ToUint32(enVal).
If separatoris undefined, let separatorbe the singlecharactetString","
Let sepbe ToStringgeparato).
If lenis zero, return the empigtring.
Let element(e the result of calling the [[Get]] internal method®@fvith argument'0" .
If element(s undefined or null, letR be the emptystring, otherwise, LeR be ToStringélement).
. Letkbel.
10. Repeat, whil&k < len
a. Let Sbe theStringvalue produced by concatenatiRgandsep
b. Letelementbe the result of calling the [[Get]] inteal method ofO with argument ToStrind).
c. If elements undefined or null, Let nextbe the emptystring, otherwise, lenhextbe
ToStringelemen.
d. LetRbe aStringvalue produced by concatenatiBgndnext
e. Increasek by 1.
11. ReturnR.

CoNo~LONE

The length property of the join method is 1.

NOTE The join function is intentionally generic; it does not require that its this value be an Array object. Therefore,
it can be transferred to other kinds of objects for use as a method. Whether the join function can be applied successfully
to a host object is implementation-dependent.

15.4.4.6 Array.prototype.pop ()
The last element of the array is removed from the array and returned.

Let O be the result of calling ToObject passing thes value as the argument.
Let lenValbethe result of callinghe [[Get]] internal method o® with argument' length
Let len be ToUint32(enVal).
If lenis zero,
a. Call the [[Put]] internal method dD with arguments length ", 0, andtrue.
b. Returnundefined.
5. Else,len>0
Letindx be ToStringleni 1).
Let elementbe the result of calling the [[Get]] internal method®@fwvith argumentindx.
Call the [[Delete]] internal method @ with argumentsndx andtrue.
Call the [[Put]] internal method d® with arguments length ", indx, andtrue.
Returnelement

el N S

P20 To

NOTE The pop function is intentionally generic; it does not require that its this value be an Array object. Therefore it
can be transferred to other kinds of objects for use as a method. Whether the pop function can be applied successfully to
a host object is implementation-dependent.

126 © Ecma International 2011

secma

15447 Array.prototype.push ([iteml [, item2 [, ¢é]

The arguments are appended to the end of the array, in the order in which they appear. The new length of the
array is returned as the result of the call.

When the push method is called with zero or more arguments item1, item2 etc., the following steps are taken:

Let O be the result of calling ToObject passing thes value as the argument.
Let lenValbe the result of callinghe [[Get]] internal method o® with argument’ length
Letn be ToUint32(enVal).
Let itemsbe an internal List whose elements are, in left to right order, the arguments that were passed to thi:
function invocation.
5. Repeat, whildtemsis not empty
a. Remove the first element froitemsand letE be the value of the element.
b. Call the [[Put]] internal method dD with arguments ToStringi, E, andtrue.
c. Increasen by 1.
6. Call the [[Put]] internal method dD with arguments length ", n, andtrue.
7. Returnn.

PobdE

The length property of the push method is 1.
NOTE The push function is intentionally generic; it does not require that its this value be an Array object. Therefore

it can be transferred to other kinds of objects for use as a method. Whether the push function can be applied successfully
to a host object is implementation-dependent.

15.4.4.8 Array.prototype.reverse ()

The elements of the array are rearranged so as to reverse their order. The object is returned as the result of
the call.

1. Let O be the result of calling ToObject passing thes value as the argument.
2. LetlenValbe the result of callinghe [[Get]] internal method o® with argument’'length”
3. Letlenbe ToUint32(enVal).
4. Letmiddlebe floor(en/2).
5. LetlowerbeO.
6. Repeat, whildower, middle
a. Letupperbelen- lower- 1.
b. LetuppeP be ToStringgppey.
c. LetlowerPbe ToStringlower).
d. LetlowerValuebe the result of calling the [[Get]] internal method®@fvith argumentlowerP.
e. LetupperValuebe the result of calling the [[Get]] internal method®@fvith argumentupperP.
f. LetlowerExistsbe the result of calling the [[HasProperty]] internal metho®ofith argument
lowerP.
g. LetupperExistdbe the result of calling the [[HasProperty]] internal method®aofith argument
upperP.
h. If lowerExistsis true andupperExistsgs true, then
i Call the [[Put]] internal method o® with argumentdowerP, upperValue andtrue .
ii. Call the [[Put]] internal method d® with argumentaipperP, lowerValue andtrue .
i. Else iflowerExistsis falseandupperExistss true, then
i Call the [[Put]] internal methodfdO with argumentdowerP, upperValue andtrue .
ii. Call the [[Delete]] internal method @, with argumentaipperPandtrue.
j- Else iflowerExistsis true andupperExistds false, then
i Call the [[Delete]] internal method @, with argumentdowerP andtrue .
ii. Call the [[Put]] internal method dD with argumentsipperP, lowerValue andtrue .
k. Else, botHowerExistsandupperExistsarefalse
i No action is required.
I. Increasdowerby 1.
7. ReturnO.

© Ecma International 2011 127

secma

NOTE The reverse function is intentionally generic; it does not require that its this value be an Array object.
Therefore, it can be transferred to other kinds of objects for use as a method. Whether the reverse function can be
applied successfully to a host object is implementation-dependent.

15.4.4.9 Array.prototype.shift ()

The first element of the array is removed from the array and returned.

1. Let O be the result of calling ToObject passing thés value as the argument.
2. LetlenValbe the result of callinghe [[Get]] internal method oD with argument' length
3. Letlenbe ToUint32(enVal).
4. |If lenis zero, then
a. Call the [[Put]] internal method dD with arguments length ", 0, andtrue.
b. Returnundefined.
5. Letfirst be the result of calling the [[Get]] internal method®@fvith argument' 0" .
6. Letkbe 1.
7. Repeat, whil&k < len

a. Letfrombe ToStringk).
b. Lettobe ToStringki1).
c. LetfromPresenbe the result of calling the [[HasProperty]] internal methodaofith argument
from.
d. If fromPresenis true, then
i. Let fromValbe the result of calling the [[Get]] internal method@fvith argumentfrom.
ii. Call the [[Put]] internal method d® with argumentgo, fromVal, andtrue.
e. Else,fromPresents false
i Call the [[Delete]] internal method @ with argumentdo andtrue.
f. Increase& by 1.
8. Call the [[Delete]] internal method @ with arguments ToStrindéni 1) andtrue.
9. Call the [[Put]] internal method d® with arguments length ", (leni 1) , andtrue.
10. Returnfirst.

NOTE The shift function is intentionally generic; it does not require that its this value be an Array object. Therefore
it can be transferred to other kinds of objects for use as a method. Whether the shift function can be applied
successfully to a host object is implementation-dependent.

15.4.4.10 Array.prototype.slice (start, end)

The slice method takes two arguments, start and end and returns an array containing the elements of the
array from element start up to, but not including, element end (or through the end of the array if endis
undefined). If start is negative, it is treated as length+start where lengthis the length of the array. If endis
negative, it is treated as lengthtendwhere lengthis the length of the array. The following steps are taken:

. Let O be the result of calling ToObject passing thé value as the argument.
2. LetAbe anew array created as if by #ngressiomew Array() whereArray is the standard budin
constructor with that name.
3. LetlenValbe the result of calling the [[Get]] internal method®@fwvith argument’ length
4. Letlenbe ToUint32(enVal).
5. LetrelativeStartbe Tolntegergtart).
6. If relativeStartis negative, lek be max({en + relativeStar},0); else lek be minfelativeStart len).
7. If endis undefined, letrelativeEndbelen; else letrelativeEndbe Tolntegerénd).
8. If relativeEndis negative, lefinal be max({en + relativeEnd,0); else letfinal be minfelativeEnd len).
9. LetnbeO.
10. Repeat, whil&k < final
a. LetPkbe ToStringk).
b. LetkPresentbe the result of calling the [[HasProperty]] internal methodaofith argumentPk.
c. If kPresents true, then
i Let kValuebe the result of caltig the [[Get]] internal method d® with argumentPk.

128 © Ecma International 2011

secma

ii. Call the [[DefineOwnProperty]] internal method Afwith arguments ToString{, Property
Descriptor {[[Value]]: kValue [[Writable]]: true, [[Enumerable]]itrue, [[Configurable]]:
true}, andfalse
d. Increasek by 1.
e. Increasen by 1.
11. ReturnA.

The length property of the slice method is 2.

NOTE The slice function is intentionally generic; it does not require that its this value be an Array object. Therefore
it can be transferred to other kinds of objects for use as a method. Whether the slice function can be applied
successfully to a host object is implementation-dependent.

15.4.4.11 Array.prototype.sort (comparefn)

The elements of this array are sorted. The sort is not necessarily stable (that is, elements that compare equal
do not necessarily remain in their original order). If comparefnis not undefined, it should be a function that
accepts two arguments x and y and returns a negative value if x <y, zero if X =y, or a positive value if x> y.

Let obj be the result of calling ToObject passing the this value as the argument.

Let len be the result of applying Uint32 to the result of calling the [[Get]] internal method of obj with argument
"length "

If comparefnis not undefined and is not a consistent comparison function for the elements of this array (see
below), the behaviour of sort is implementation-defined.

Let proto be the value of the [[Prototype]] internal property of obj. If protois not null and there exists an integer
j such that all of the conditions below are satisfied then the behaviour of sort is implementation-defined:

1 objis sparse (15.4)
T O¢j<len
1 The result of calling the [[HasProperty]] internal method of proto with argument ToString{) is true.

The behaviour of sort is also implementation defined if objis sparse and any of the following conditions are
true:

1 The [[Extensible]] internal property of obj is false.
1 Any array index property of obj whose name is a nonnegative integer less than lenis a data property
whose [[Configurable]] attribute is false.

The behaviour of sort is also implementation defined if any array index property of obj whose name is a
nonnegative integer less than len is an accessor property or is a data property whose [[Writable]] attribute is
false.

Otherwise, the following steps are taken.

1. Perform an implementatiedependent sequence of calls to the [[Get]] , [[Put]], and [[Delete]] internal
methods obbjand to SortCompare (described below), where the first argument for each call to [[Get]],
[[Put]], or [[Delete]]is a nonnegative integer less than and where the arguments for calls to SortCompare
are results of previous calls to the [[Get]] internal method. The throw argument to the [[Put]] and [[Delete]]
internal methods will be the valueue. If objis not sparse then [[Delete]] must not be called.

2. Returnobij.

The returned object must have the following two properties.
1 There must be some mathematical permutation p of the nonnegative integers less than len, such that

for every nonnegative integer j less than len, if property old[j] existed, then newp(j)] is exactly the
same value as old[j],. But if property old[j] did not exist, then new|p(j)] does not exist.

© Ecma International 2011 129

secma

1 Then for all nonnegative integers j and k, each less than len, if SortComparg(k) <0 (see SortCompare
below), then p(j) < p(K).

Here the notation old[j] is used to refer to the hypothetical result of calling the [[Get]] internal method of obj
with argument j before this function is executed, and the notation new[] to refer to the hypothetical result of
calling the [[Get]] internal method of obj with argument j after this function has been executed.

A function comparefnis a consistent comparison function for a set of values Sif all of the requirements below
are met for all values a, b, and c (possibly the same value) in the set S The notation a<ceb means
comparefifa,b) < 0; a =cg b means comparefifa,b) = 0 (of either sign); and a >cr b means comparefifa,b) > 0.

1 Calling comparefifa,b) always returns the same valhen given a specific pair of valuasandb as its two
arguments. Furthermor&ype() is Number, ands is not NaN. Note that this implies that exactly onaef b,
a=ce b, anda >c¢ b will be true for a given pair ad andb.

Calling comparefia,b) does not modify théhis object.

a=crpa (reflexivity)

If a=ceb, thenb=cra (symmetry)

If a=cegbandb=crc, thena=cec (transitivity of =)

If a<cgbandb <crc, thena<cec (transitivity of <cf)

If a>cgbandb >¢rc, thena>cec (transitivity of >f)

E R EEEE]

NOTE The above conditions are necessary and sufficient to ensure that comparefndivides the set Sinto equivalence
classes and that these equivalence classes are totally ordered.

When the SortCompare abstract operation is called with two arguments j and k, the following steps are taken:

Let jString be ToStringj).
Let kStringbe ToStringk).
Let hasjbe the result of calling the [[HasProperty]] internal methoalgfwith argumengString.
Let haskbe the result of calling the [[HasProperty]] internal methoalojfwith argumentkString
If hasjandhaskare bothfalse, then returntO0.
If hasjis false, then return 1.
If haskis false, then returri 1.
Let x be the result of calling the [[Get]] internal methodadfj with argumen{String.
Lety be the result of calling thgGet]] internal method obbj with argumentkString
10. If x andy are bothundefined, return+0.
11. If xis undefined, return 1.
12. If yis undefined, return- 1.
13. If the argumentomparefnis notundefined, then
a. If IsCallablecomparefi is false, throw aTypeError exception.
b. Return the result of calling the [[Call]] internal methodoafmparefnpassingundefined as thethis
value and with argumentsandy.
14. Let xStringbe ToStringk).
15. Let yStringbe ToStringy).
16. If xString< yString return- 1.
17. If xString> yString return 1.
18. Return+0.

CoNoUALDE

NOTE 1 Because non-existent property values always compare greater than undefined property values, and
undefined always compares greater than any other value, undefined property values always sort to the end of the result,
followed by non-existent property values.

NOTE 2 The sort function is intentionally generic; it does not require that its this value be an Array object. Therefore,

it can be transferred to other kinds of objects for use as a method. Whether the sort function can be applied successfully
to a host object is implementation-dependent.

130 © Ecma International 2011

secma

154412 Array. prototype.splice (start, deleteCount [, i

When the splice method is called with two or more arguments start, deleteCountind (optionally) item1, item2,
etc., the deleteCounklements of the array starting at array index start are replaced by the arguments item1,
item2 etc. An Array object containing the deleted elements (if any) is returned. The following steps are taken:

1. Let O be the result ofalling ToObject passing thiis value as the argument.

2. LetAbe anew array created as if by the expressimm Array() whereArray is the standard budin
constructor with that name.

3. LetlenValbe the result of calling the [[Get]] internal method@fwvith argument length

4. Letlenbe ToUint32(enVal).

5. LetrelativeStartbe Tolntegergtart).

6. If relativeStartis negative, letctualStartbe max({en + relativeStar},0); else letactualStartbe
min(relativeStart len).

7. LetactualDeleteCounbe min(max(Tolneger@eleteCount0), leni actualStarj.

8. LetkbeO.

9. Repeat, whil&k < actualDeleteCount

a. Letfrombe ToString&ctualStartk).
b. LetfromPresentbe the result of calling the [[HasProperty]] internal metho®ofith argument
from.
c. If fromPresents true, then
i Let fromValuebe the result of calling the [[Get]] internal method@fvith argumentrom.
ii. Call the [[DefineOwnProperty]] internal method Afwith arguments ToStringf, Property
Descriptor {[[Value]]: fromValue [[Writable]]: true, [[Enumerable]]true,
[[Configurable]]: true}, andfalse.
d. Incrementk by 1.
10. Let itemsbe an internal List whose elements are, in left to right order, the portion of the actual argument list
starting withitem1 The list will be empty if no such items are present.
11. LetitemCouwnt be the number of elements items
12. If itemCount< actualDeleteCountthen
a. LetkbeactualStart
b. Repeat, whilk < (leni actualDeleteCount
i Let from be ToStringk+actualDeleteCount
ii. Let to be ToStringk+itemCoun}.
iii. Let fromPresenbe the result of céihg the [[HasProperty]] internal method &f with
argumentfrom.
iv. If fromPresenis true, then
1. LetfromValuebe the result of calling the [[Get]] internal method@fwvith
argumentfrom.
2. Call the [[Put]] internal method d® with argumentgo, fromValue and true.
V. Else,fromPresenis false
1. Call the [[Delete]] internal method @& with argumentgo andtrue.
vi. Increase k by 1.
c. Letkbelen.
d. Repeat, whil&k > (leni actualDeleteCount# itemCoun}
i Call the [[Delete]] internal method @ with arguments ToStrig(ki 1) andtrue.
ii. Decreas& by 1.
13. Else ifitemCount> actualDeleteCountthen
a. Letkbe (eni actualDeleteCount
b. Repeat, whil&k > actualStart
i Let from be ToStringk + actualDeleteCount 1).
ii. Let to be ToStringk + itemCounti 1)
iii. Let fromPresenbe the result of calling the [[HasProperty]] internal method ©@fwith
argumentfrom.
iv. If fromPresenis true, then
1. LetfromValuebe the result of calling the [[Get]] internal method®@fwvith
argumentfrom.
2. Call the [[Put]] internal method dD with argumentgo, fromValue andtrue.
V. Else,fromPresenis false
1. Call the [[Delete]] internal method & with argumento andtrue.

© Ecma International 2011 131

secma

Vi. Decreas& by 1.
14. Let k beactualStart
15. Repeat, whildgtemsis not empty
a. Remove the first element froitemsand letE be the value of that eiment.
b. Call the [[Put]] internal method dD with arguments ToStringj, E, andtrue.
c. Increase& by 1.
16. Call the [[Put]] internal method d® with arguments length ", (leni actualDeleteCount itemCoun},
andtrue.
17. ReturnA.

The length property of the spli ce method is 2.

NOTE The splice function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the splice function can be applied
successfully to a host object is implementation-dependent.

154413 Array. prototype.unshift ([iteml [, item2 [,

The arguments are prepended to the start of the array, such that their order within the array is the same as the
order in which they appear in the argument list.

When the unshift method is called with zero or more arguments iteml, item2 etc., the following steps are
taken:

Let O be the result of calling ToObject passing thes value as the argument.
Let lenValbe the result of callinghe [[Get]] internal method o® with argument' length
Let len be ToUint32(enVal).
Let argCountbe the number of actual arguments.
Letk belen.
Repeat, while&k > 0,
a. Letfrombe ToStringki 1).
b. Lettobe ToStringk+argCounti 1).
c. LetfromPresenbe the esult of calling the [[HasProperty]] internal method®@fvith argument
from.
d. If fromPresenis true, then
i. Let fromValuebe the result of calling the [[Get]] internal method®@fvith argumentfrom.
ii. Call the [[Put]] internal method d® with argumentgo, fromValue andtrue.
e. Else,fromPresents false
i Call the [[Delete]] internal method @ with argumentgo, andtrue.
f. Decreas&k by 1.
7. LetjbeO.
8. Letitemsbe an internal List whose elements are, in left to right order, the arguments that were paBied to t
function invocation.
9. Repeat, whildtemsis not empty
a. Remove the first element froitemsand letE be the value of that element.
b. Call the [[Put]] internal method dD with arguments ToString), E, andtrue.
c. Increasq by 1.
10. Call the [[Put]] internaimethod ofO with arguments length ", len+targCount andtrue.
11. ReturnlentargCount

cokbwnNE

The length property of the unshift method is 1.
NOTE The unshift function is intentionally generic; it does not require that its this value be an Array object.

Therefore it can be transferred to other kinds of objects for use as a method. Whether the unshift function can be
applied successfully to a host object is implementation-dependent.

132 © Ecma International 2011

secma

15.4.4.14 Array.prototype.indexOf (searchElement [, fromindex])

indexOf compares seachElementto the elements of the array, in ascending order, using the internal Strict
Equality Comparison Algorithm (11.9.6), and if found at one or more positions, returns the index of the first
such position; otherwise, -1 is returned.

The optional second argument fromindexdefaults to O (i.e. the whole array is searched). If it is greater than or
equal to the length of the array, -1 is returned, i.e. the array will not be searched. If it is negative, it is used as
the offset from the end of the array to compute fromindex If the computed index is less than 0, the whole array
will be searched.

When the indexOf method is called with one or two arguments, the following steps are taken:

Let O be the result of calling ToObject passing thés value as the gument.
Let lenValue be the result of calling the [[Get]] internal method®@fvith the argument length
Letlenbe ToUint32(enValug.
If lenis 0, return-1.
If argumentfromindexwas passed lat be Tolntegerffomindey; else letn be 0.
If n Olen, return-1.
fnd 0, then
a. Letkben.

8. Else,n<0

a. Letkbelen-absf).

b. If kis less than 0, then l&tbe 0.
9. Repeat, whilék<len

a. LetkPresentbe the result of calling the [[HasProperty]] internal methodaofith argument

ToStringK).
b. If kPresents true, then
i Let elementKbe the result of calling the [[Get]] internal method@fvith the argument
ToStringK).
ii. Let samebe the result of applying the Strict Equality Comparison Algorithm to
searchElemenandelementK
iii. If sameis true, returnk.

c. Increasek by 1.

10. Return-1.

NooA®NE

The length property of the indexOf method is 1.

NOTE The indexOf function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the indexOf function can be
applied successfully to a host object is implementation-dependent.

15.4.4.15 Array.prototype.lastindexOf (searchElement [, fromindex])

lastindexOf compares searchElemento the elements of the array in descending order using the internal
Strict Equality Comparison Algorithm (11.9.6), and if found at one or more positions, returns the index of the
last such position; otherwise, -1 is returned.

The optional second argument fromindexdefaults to the array's length minus one (i.e. the whole array is
searched). If it is greater than or equal to the length of the array, the whole array will be searched. If it is
negative, it is used as the offset from the end of the array to compute fromindex If the computed index is less
than 0, -1 is returned.

When the lastindexOf method is called with one or two arguments, the following steps are taken:

Let O be the result of calling ToObject passing thés value as the argument.

Let lenValue be the result of calling the [[Get]] internalethod ofO with the argument length
Let len be ToUint32[enValug.

If lenis O, return-1.

PobdE

© Ecma International 2011 133

secma

If argumentfromindexwas passed let be Tolntegerifomindey; else letn belen-1.
If n OO0, then letk be minf, leni 1).
Else,n<0
a. Letkbelen- absf).
8. Repeat, whilkO0
a. LetkPresentbe the result of calling the [[HasProperty]] internal methodofith argument
ToStringK).
b. If kPresents true, then
i Let elementkbe the result of calling the [[Get]] internal method®@fwvith the argument
ToStringK).
ii. Let samebe the result of applying the Strict Equality Comparison Algorithm to
searchElemenandelementK
iii. If sameis true, returnk.
c. Decreas& by 1.
9. Return-1.

Noo

Thelength property of thdastl ndexOf method isl.

NOTE The lastindexOf function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the lastindexOf function can be
applied successfully to a host object is implementation-dependent.

15.4.4.16 Array.prototype.every (callbackfn [, thisArg])

callbackfn should be a function that accepts three arguments and returns a value that is coercible to the
Boolean value true or false. every calls callbackfnonce for each element present in the array, in ascending
order, until it finds one where callbackfnreturns false. If such an element is found, every immediately returns
false. Otherwise, if callbackfnreturned true for all elements, every will return true. callbackfnis called only for
elements of the array which actually exist; it is not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn If it is not
provided, undefined is used instead.

callbackfn is called with three arguments: the value of the element, the index of the element, and the object
being traversed.

every does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn

The range of elements processed by every is set before the first call to callbackfn Elements which are
appended to the array after the call to every begins will not be visited by callbackfn If existing elements of the
array are changed, their value as passed to callbackfn will be the value at the time every visits them;
elements that are deleted after the call to every begins and before being visited are not visited. every acts
like the "for all" quantifier in mathematics. In particular, for an empty array, it returns true.

When the every method is called with one or two arguments, the following steps are taken:

Let O be the result of calling ToObject passing thés value as the argument.
Let lenValue be the result of calling the [[Get]] internal method®@fvith the argumentlength”
Let len be ToUint32(enValug.
If IsCallable(allbackfr) is false, throw aTypeError exception.
If thisArgwas supplied, leT bethisArg; else letT be undefined.
Letk be 0.
Repeat, whil&k < len
a. LetPkbe ToStringk).
b. LetkPresentbe the result of calling the [[HasProperty]] internal methodofith argumentPk.
c. If kPresents true, then
i Let kValuebe the result of calling the [[Get]] internal method®@fwvith argumentPk.

NouhkwNE

134 © Ecma International 2011

secma

ii. Let testResulbe the result of calling the [[Call]] inteah method ofcallbackfnwith T as the
this value and argument list containikalue k, andO.
iii. If ToBooleangestResult)s false, returnfalse.
d. Increasek by 1.
8. Returntrue.

Thelength property of theevery method isl.

NOTE The every function is intentionally generic; it does not require that its this value be an Array object. Therefore
it can be transferred to other kinds of objects for use as a method. Whether the every function can be applied
successfully to a host object is implementation-dependent.

15.4.4.17 Array.prototype.some (callbackfn [, thisArg])

callbackfnshould be a function that accepts three arguments and returns a value that is coercible to the
Boolean value true or false. some calls callbackfnonce for each element present in the array, in ascending
order, until it finds one where callbackfnreturns true. If such an element is found, some immediately returns
true. Otherwise, some returns false. callbackfnis called only for elements of the array which actually exist; it is
not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn If it is not
provided, undefined is used instead.

callbackfnis called with three arguments: the value of the element, the index of the element, and the object
being traversed.

some does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn

The range of elements processed by some is set before the first call to callbackfn Elements that are appended
to the array after the call to some begins will not be visited by callbackfn If existing elements of the array are
changed, their value as passed to callbackfnwill be the value at the time that some visits them; elements that
are deleted after the call to some begins and before being visited are not visited. some acts like the "exists"
quantifier in mathematics. In particular, for an empty array, it returns false.

When the some method is called with one or two arguments, the following steps are taken:

Let O be the result of calling ToObject passing thes value as the argument.
Let lenValue be the result of calling the [[Get]] internal method®@fwvith the argumentiength”
Letlenbe ToUint32(enValug.
If IsCallabe(callbackfr) is false, throw aTypeError exception.
If thisArgwas supplied, leT bethisArg; else letT beundefined.
Letk be 0.
Repeat, whil&k < len
a. LetPkbe ToStringk).
b. LetkPresentbe the result of calling the [[HasProperty]] internal methodofith argumentPk.
c. If kPresents true, then
i Let kValuebe the result of calling the [[Get]] internal method®@fvith argumentPk.
ii. Let testResulbe the result of calling the [[Call]] internal method azllbackfnwith T as the
this value and argumentdi containingkValue k, andO.
iii. If ToBooleanestResult)s true, returntrue.
d. Increase& by 1.
8. Returnfalse.

Nooks~wWNE

Thelength property of thesome method isl.

NOTE The some function is intentionally generic; it does not require that its this value be an Array object. Therefore
it can be transferred to other kinds of objects for use as a method. Whether the some function can be applied successfully
to a host object is implementation-dependent.

© Ecma International 2011 135

secma

15.4.4.18 Array.prototype.forEach (callbackfn [, thisArg])

callbackfnshould be a function that accepts three arguments. forEach calls callbackfnonce for each element
present in the array, in ascending order. callbackfnis called only for elements of the array which actually exist;
it is not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn If it is not
provided, undefined is used instead.

callbackfnis called with three arguments: the value of the element, the index of the element, and the object
being traversed.

forEach does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn

The range of elements processed by forEach is set before the first call to callbackfn Elements which are
appended to the array after the call to forEach begins will not be visited by callbackfn If existing elements of
the array are changed, their value as passed to callback will be the value at the time forEach visits them;
elements that are deleted after the call to forEach begins and before being visited are not visited.

When the forEach method is called with one or two arguments, the following steps are taken:

Let O be the result of calling ToObject passing thés value as the argument.
Let lenValue be the result of calling the [[Get]] internal method®@fvith the argumentiength”
Letlenbe ToUint32(enValug.
If IsCallablegallbackfn is false, throw aTypeError exception.
If thisArgwas supplied, leT bethisArg; else letT beundefined.
Letk be 0.
Repeat, whil&k < len
a. LetPkbe ToStringk).
b. LetkPresentbe the result of calling the [[HasProperty]] internal methodofith argumentPk.
c. |If kPresents true, then
i Let kValuebe the result of calling the [[Get]] internal method®@fwvith argumentPk.
ii. Call the [[Call]] internal method ofallbackfnwith T as thethis value and argument list
containingkValue k, andO.
d. Increasek by 1.
8. Returnundefined.

NogAr®WNE

Thelength property of theforEach method isl.

NOTE The forEach function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the forEach function can be
applied successfully to a host object is implementation-dependent.

15.4.4.19 Array.prototype.map (callbackfn [, thisArg])

callbackfnshould be a function that accepts three arguments. map calls callbackfnonce for each element in the
array, in ascending order, and constructs a new Array from the results. callbackh is called only for elements of
the array which actually exist; it is not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn If it is not
provided, undefined is used instead.

callbackfnis called with three arguments: the value of the element, the index of the element, and the object
being traversed.

map does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn

136 © Ecma International 2011

secma

The range of elements processed by map is set before the first call to callbackfn Elements which are
appended to the array after the call to map begins will not be visited by callbackfn If existing elements of the
array are changed, their value as passed to callbackfnwill be the value at the time map visits them; elements
that are deleted after the call to map begins and before being visited are not visited.

When the map method is called with one or two arguments, the following steps are taken:

1. LetO be the result of calling ToObject passing thés value as the argument.
2. LetlenValue be the result of calling the [[Get]] internal method®@fwvith the argumentlength”
3. Letlenbe ToUint32(enValug.
4. |If IsCallablegallbackfn is false, throw aTypeError exception.
5. If thisArgwas supplied, leT bethisArg; else letT be undefined.
6. LetAbe anew array created as if by the expression Array(len) whereArray is the standard buHt
in constructor with that name ameh is the value ofen.
7. LetkbeO.
8. Repeat, whilk <len
a. LetPkbe ToStringk).
b. LetkPresenthe the result of calling the [[HasProperty]] internal method®ofith argumentPk.
c. If kPresents true, then
i Let kValuebe the result of calling the [[Get]] internal method®@fvith argumentPk.
ii. Let mappedValude the result of calling the [[Call]] internal method adlibackfnwith T as
thethis value and argument list containiklyalue k, andO.
iil. Call the [[DefineOwnProperty]] internal method Afwith argument$k, Property
Descriptor {[[Value]]: mappedValug[[Writable]]: true, [[Enumerable]]true,
[[Configurable]]: true}, andfalse.
d. Increasek by 1.
9. ReturnA.

Thelength property of themap method isl.

NOTE The map function is intentionally generic; it does not require that its this value be an Array object. Therefore it
can be transferred to other kinds of objects for use as a method. Whether the map function can be applied successfully to
a host object is implementation-dependent.

15.4.4.20 Array.prototype.filter (callbackfn [, thisArg])

callbackfnshould be a function that accepts three arguments and returns a value that is coercible to the
Boolean value true or false. filter calls callbackfnonce for each element in the array, in ascending order,
and constructs a new array of all the values for which callbackfnreturns true. callbackfnis called only for
elements of the array which actually exist; it is not called for missing elements of the array.

If a thisArg parameter is provided, it will be used as the this value for each invocation of callbackfn If it is not
provided, undefined is used instead.

callbackfnis called with three arguments: the value of the element, the index of the element, and the object
being traversed.

filter does not directly mutate the object on which it is called but the object may be mutated by the calls to
callbackfn

The range of elements processed by filter is set before the first call to callbackfn Elements which are
appended to the array after the call to filter begins will not be visited by callbackfn If existing elements of
the array are changed their value as passed to callbackfnwill be the value at the time filter visits them;
elements that are deleted after the call to filter begins and before being visited are not visited.

When the filter method is called with one or two arguments, the following steps are taken:

1. Let O be the result of calling ToObject passing thes value as the argument.
2. LetlenValue be the result of calling the [[Get]] internal method@fvith the argumentlength”

© Ecma International 2011 137

